113 research outputs found

    The Pure Virtual Braid Group Is Quadratic

    Full text link
    If an augmented algebra K over Q is filtered by powers of its augmentation ideal I, the associated graded algebra grK need not in general be quadratic: although it is generated in degree 1, its relations may not be generated by homogeneous relations of degree 2. In this paper we give a sufficient criterion (called the PVH Criterion) for grK to be quadratic. When K is the group algebra of a group G, quadraticity is known to be equivalent to the existence of a (not necessarily homomorphic) universal finite type invariant for G. Thus the PVH Criterion also implies the existence of such a universal finite type invariant for the group G. We apply the PVH Criterion to the group algebra of the pure virtual braid group (also known as the quasi-triangular group), and show that the corresponding associated graded algebra is quadratic, and hence that these groups have a (not necessarily homomorphic) universal finite type invariant.Comment: 53 pages, 15 figures. Some clarifications added and inaccuracies corrected, reflecting suggestions made by the referee of the published version of the pape

    Curved Koszul duality theory

    Get PDF
    38 pagesInternational audienceWe extend the bar-cobar adjunction to operads and properads, not necessarily augmented. Due to the default of augmentation, the objects of the dual category are endowed with a curvature. We handle the lack of augmentation by extending the category of coproperads to include objects endowed with a curvature. As usual, the bar-cobar construction gives a (large) cofibrant resolution for any properad, such as the properad encoding unital and counital Frobenius algebras, a notion which appears in 2d-TQFT. We also define a curved Koszul duality theory for operads or properads presented with quadratic, linear and constant relations, which provides the possibility for smaller relations. We apply this new theory to study the homotopy theory and the cohomology theory of unital associative algebras

    Supersymmetric Deformations of Maximally Supersymmetric Gauge Theories

    Full text link
    We study supersymmetric and super Poincar\'e invariant deformations of ten-dimensional super Yang-Mills theory and of its dimensional reductions. We describe all infinitesimal super Poincar\'e invariant deformations of equations of motion of ten-dimensional super Yang-Mills theory and its reduction to a point; we discuss the extension of them to formal deformations. Our methods are based on homological algebra, in particular, on the theory of L-infinity and A-infinity algebras. The exposition of this theory as well as of some basic facts about Lie algebra homology and Hochschild homology is given in appendices.Comment: New results added. 111 page

    Assessment of BED HIV-1 Incidence Assay in Seroconverter Cohorts: Effect of Individuals with Long-Term Infection and Importance of Stable Incidence

    Get PDF
    BACKGROUND: Performance of the BED assay in estimating HIV-1 incidence has previously been evaluated by using longitudinal specimens from persons with incident HIV infections, but questions remain about its accuracy. We sought to assess its performance in three longitudinal cohorts from Thailand where HIV-1 CRF01_AE and subtype B' dominate the epidemic. DESIGN: BED testing was conducted in two longitudinal cohorts with only incident infections (a military conscript cohort and an injection drug user cohort) and in one longitudinal cohort (an HIV-1 vaccine efficacy trial cohort) that also included long-term infections. METHODS: Incidence estimates were generated conventionally (based on the number of annual serocoversions) and by using BED test results in the three cohorts. Adjusted incidence was calculated where appropriate. RESULTS: For each longitudinal cohort the BED incidence estimates and the conventional incidence estimates were similar when only newly infected persons were tested, whether infected with CRF01_AE or subtype B'. When the analysis included persons with long-term infections (to mimic a true cross-sectional cohort), BED incidence estimates were higher, although not significantly, than the conventional incidence estimates. After adjustment, the BED incidence estimates were closer to the conventional incidence estimates. When the conventional incidence varied over time, as in the early phase of the injection drug user cohort, the difference between the two estimates increased, but not significantly. CONCLUSIONS: Evaluation of the performance of incidence assays requires the inclusion of a substantial number of cohort-derived specimens from individuals with long-term HIV infection and, ideally, the use of cohorts in which incidence remained stable. Appropriate adjustments of the BED incidence estimates generate estimates similar to those generated conventionally

    Real World Data in Adaptive Biomedical Innovation: A Framework for Generating Evidence Fit for Decision-Making

    Get PDF
    Analyses of healthcare databases (claims, electronic health records [EHRs]) are useful supplements to clinical trials for generating evidence on the effectiveness, harm, use, and value of medical products in routine care. A constant stream of data from the routine operation of modern healthcare systems, which can be analyzed in rapid cycles, enables incremental evidence development to support accelerated and appropriate access to innovative medicines. Evidentiary needs by regulators, Health Technology Assessment, payers, clinicians, and patients after marketing authorization comprise (1) monitoring of medication performance in routine care, including the materialized effectiveness, harm, and value; (2) identifying new patient strata with added value or unacceptable harms; and (3) monitoring targeted utilization. Adaptive biomedical innovation (ABI) with rapid cycle database analytics is successfully enabled if evidence is meaningful, valid, expedited, and transparent. These principles will bring rigor and credibility to current efforts to increase research efficiency while upholding evidentiary standards required for effective decision-making in healthcare

    Mapping HIV-1 Vaccine Induced T-Cell Responses: Bias towards Less-Conserved Regions and Potential Impact on Vaccine Efficacy in the Step Study

    Get PDF
    T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay. Importantly, frequency analysis of the mapped epitopes indicated that there was a significant skewing of the T cell response; variable epitopes were detected more frequently than would be expected from an unbiased sampling of the vaccine sequences. Correspondingly, the most highly conserved epitopes in Gag, Pol, and Nef (defined by presence in >80% of sequences currently in the Los Alamos database www.hiv.lanl.gov) were detected at a lower frequency than unbiased sampling, similar to the frequency reported for responses to natural infection, suggesting potential epitope masking of these responses. This may be a generic mechanism used by the virus in both contexts to escape effective T cell immune surveillance. The disappointing results of the Step trial raise the bar for future HIV vaccine candidates. This report highlights the bias towards less-conserved epitopes present in the same vaccine used in the Step trial. Development of vaccine strategies that can elicit a greater breadth of responses, and towards conserved regions of the genome in particular, are critical requirements for effective T-cell based vaccines against HIV-1

    Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses

    Get PDF
    available in PMC 2011 September 1Vaccines based on recombinant proteins avoid the toxicity and antivector immunity associated with live vaccine (for example, viral) vectors, but their immunogenicity is poor, particularly for CD8+ T-cell responses. Synthetic particles carrying antigens and adjuvant molecules have been developed to enhance subunit vaccines, but in general these materials have failed to elicit CD8+ T-cell responses comparable to those for live vectors in preclinical animal models. Here, we describe interbilayer-crosslinked multilamellar vesicles formed by crosslinking headgroups of adjacent lipid bilayers within multilamellar vesicles. Interbilayer-crosslinked vesicles stably entrapped protein antigens in the vesicle core and lipid-based immunostimulatory molecules in the vesicle walls under extracellular conditions, but exhibited rapid release in the presence of endolysosomal lipases. We found that these antigen/adjuvant-carrying vesicles form an extremely potent whole-protein vaccine, eliciting endogenous T-cell and antibody responses comparable to those for the strongest vaccine vectors. These materials should enable a range of subunit vaccines and provide new possibilities for therapeutic protein delivery.Ragon Institute of MGH, MIT and HarvardBill & Melinda Gates FoundationUnited States. Dept. of Defense (contract W911NF-07-D-0004)National Institutes of Health (U.S.) (P41RR002250)National Institutes of Health (U.S.) (RC2GM092599
    • …
    corecore