283 research outputs found

    Influence of Synthesis Temperature on the Defect Structure of Boron Carbide: Experimental and Modeling Studies

    Full text link
    Boron carbide (B4C) was synthesized from the elements at temperatures ranging from 1300 degrees to 2100 degrees C using the spark plasma synthesis method. Significant densification commenced at about 1500 degrees C and was accompanied by a corresponding decrease in the defect structure of this carbide. Changes in the X-ray diffraction patterns were in agreement with predictions of simulation studies based on the presence of twins. Transmission electron microscopy observations were consistent with the experimental observations and the modeling predictions

    Serum total and bone alkaline phosphatase levels and their correlation with serum minerals over the lifespan of sheep

    Get PDF
    This study aimed to assess serum total alkaline phosphatase (ALP) and its bone isoform (BALP) levels during the ageing and in different physiologic states of sheep, in order to expand the knowledge about the variation of these biomarkers over the sheep lifespan. Ninety female sheep were divided into nine groups of various ages and physiological states (dry, lactation and pregnancy). Serum ALP, BALP and mineral levels were determined by commercial immunoassay, molecular absorbance spectrophotometry and chemical luminescence for BALP determination. Serum ALP and BALP decreased as sheep aged, and no statistically significant differences were obtained between ewes in different physiologic states. The continuous decline of serum BALP concentration along the sheep lifespan, namely in mature and old sheep, is a sign of decreasing bone turnover associated with ageing. Serum calcium concentrations increased slightly until 2 years of age and then showed a tenuous but statistically significant decrease in mature sheep, while serum phosphorus maintained an uninterrupted decrease as sheep matured. The knowledge of serum values of bone biomarkers throughout the sheep lifespan may be useful in preclinical orthopaedic research studies and for animal science studies using sheep.Cristina P. Sousa acknowledges the Portuguese Foundation for Science and Technology for her PhD scholarship SFRH/BD/45018/2008

    Activation of DNA-PK by Ionizing Radiation Is Mediated by Protein Phosphatase 6

    Get PDF
    DNA-dependent protein kinase (DNA-PK) plays a critical role in DNA damage repair, especially in non-homologous end-joining repair of double-strand breaks such as those formed by ionizing radiation (IR) in the course of radiation therapy. Regulation of DNA-PK involves multisite phosphorylation but this is incompletely understood and little is known about protein phosphatases relative to DNA-PK. Mass spectrometry analysis revealed that DNA-PK interacts with the protein phosphatase-6 (PP6) SAPS subunit PP6R1. PP6 is a heterotrimeric enzyme that consists of a catalytic subunit, plus one of three PP6 SAPS regulatory subunits and one of three ankyrin repeat subunits. Endogenous PP6R1 co-immunoprecipitated DNA-PK, and IR enhanced the amount of complex and promoted its import into the nucleus. In addition, siRNA knockdown of either PP6R1 or PP6 significantly decreased IR activation of DNA-PK, suggesting that PP6 activates DNA-PK by association and dephosphorylation. Knockdown of other phosphatases PP5 or PP1γ1 and subunits PP6R3 or ARS-A did not reduce IR activation of DNA-PK, demonstrating specificity for PP6R1. Finally, siRNA knockdown of PP6R1 or PP6 but not other phosphatases increased the sensitivity of glioblastoma cells to radiation-induced cell death to a level similar to DNA-PK deficient cells. Our data demonstrate that PP6 associates with and activates DNA-PK in response to ionizing radiation. Therefore, the PP6/PP6R1 phosphatase is a potential molecular target for radiation sensitization by chemical inhibition

    Structure and dynamics of the operon map of Buchnera aphidicola sp. strain APS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene expression regulation is still poorly documented in bacteria with highly reduced genomes. Understanding the evolution and mechanisms underlying the regulation of gene transcription in <it>Buchnera aphidicola</it>, the primary endosymbiont of aphids, is expected both to enhance our understanding of this nutritionally based association and to provide an intriguing case-study of the evolution of gene expression regulation in a reduced bacterial genome.</p> <p>Results</p> <p>A Bayesian predictor was defined to infer the <it>B. aphidicola </it>transcription units, which were further validated using transcriptomic data and RT-PCR experiments. The characteristics of <it>B. aphidicola </it>predicted transcription units (TUs) were analyzed in order to evaluate the impact of operon map organization on the regulation of gene transcription.</p> <p>On average, <it>B. aphidicola </it>TUs contain more genes than those of <it>E. coli</it>. The global layout of <it>B. aphidicola </it>operon map was mainly shaped by the big reduction and the rearrangements events, which occurred at the early stage of the symbiosis. Our analysis suggests that this operon map may evolve further only by small reorganizations around the frontiers of <it>B. aphidicola </it>TUs, through promoter and/or terminator sequence modifications and/or by pseudogenization events. We also found that the need for specific transcription regulation exerts some pressure on gene conservation, but not on gene assembling in the operon map in <it>Buchnera</it>. Our analysis of the TUs spacing pointed out that a selection pressure is maintained on the length of the intergenic regions between divergent adjacent gene pairs.</p> <p>Conclusions</p> <p><it>B. aphidicola </it>can seemingly only evolve towards a more polycistronic operon map. This implies that gene transcription regulation is probably subject to weak selection pressure in <it>Buchnera </it>conserving operons composed of genes with unrelated functions.</p

    Massive rotator cuff tears: functional outcome after debridement or arthroscopic partial repair

    Get PDF
    Background The surgical treatment of massive rotator cuff tears (RCT) is still controversial and can be based on a variety of different surgical repair methods. This study investigated the effectiveness of arthroscopic debridement or arthroscopic partial repair in patients with massive RCT. Materials and methods This prospective, randomized study involved forty-two patients with massive RCT (fatty infiltration stage 3 or 4) treated with either arthroscopic partial repair or arthroscopic debridement were selected to detect possible differences in functional outcome. Both groups were matched according to age and gender. Patients were examined before, and 16 ± 3 and 24 ± 2 months after surgery. The status of the rotator cuff repair was determined using ultrasonographic evaluation. Results Regardless of the treatment group, postoperative results demonstrated highly significant improvements compared with preoperative values in most parameters. The overall Constant score in the partial repair group was superior to the outcome in the debridement group (P \ 0.01, F = 8.561), according to better results in abductio

    Developmental Programming Mediated by Complementary Roles of Imprinted Grb10 in Mother and Pup

    Get PDF
    Developmental programming links growth in early life with health status in adulthood. Although environmental factors such as maternal diet can influence the growth and adult health status of offspring, the genetic influences on this process are poorly understood. Using the mouse as a model, we identify the imprinted gene Grb10 as a mediator of nutrient supply and demand in the postnatal period. The combined actions of Grb10 expressed in the mother, controlling supply, and Grb10 expressed in the offspring, controlling demand, jointly regulate offspring growth. Furthermore, Grb10 determines the proportions of lean and fat tissue during development, thereby influencing energy homeostasis in the adult. Most strikingly, we show that the development of normal lean/fat proportions depends on the combined effects of Grb10 expressed in the mother, which has the greater effect on offspring adiposity, and Grb10 expressed in the offspring, which influences lean mass. These distinct functions of Grb10 in mother and pup act complementarily, which is consistent with a coadaptation model of imprinting evolution, a model predicted but for which there is limited experimental evidence. In addition, our findings identify Grb10 as a key genetic component of developmental programming, and highlight the need for a better understanding of mother-offspring interactions at the genetic level in predicting adult disease risk

    Altered multisensory temporal integration in obesity

    Get PDF
    Eating is a multisensory behavior. The act of placing food in the mouth provides us with a variety of sensory information, including gustatory, olfactory, somatosensory, visual, and auditory. Evidence suggests altered eating behavior in obesity. Nonetheless, multisensory integration in obesity has been scantily investigated so far. Starting from this gap in the literature, we seek to provide the first comprehensive investigation of multisensory integration in obesity. Twenty male obese participants and twenty male healthy-weight participants took part in the study aimed at describing the multisensory temporal binding window (TBW). The TBW is defined as the range of stimulus onset asynchrony in which multiple sensory inputs have a high probability of being integrated. To investigate possible multisensory temporal processing deficits in obesity, we investigated performance in two multisensory audiovisual temporal tasks, namely simultaneity judgment and temporal order judgment. Results showed a wider TBW in obese participants as compared to healthy-weight controls. This holds true for both the simultaneity judgment and the temporal order judgment tasks. An explanatory hypothesis would regard the effect of metabolic alterations and low-grade inflammatory state, clinically observed in obesity, on the temporal organization of brain ongoing activity, which one of the neural mechanisms enabling multisensory integration

    Computational Biology Methods and Their Application to the Comparative Genomics of Endocellular Symbiotic Bacteria of Insects

    Get PDF
    Comparative genomics has become a real tantalizing challenge in the postgenomic era. This fact has been mostly magnified by the plethora of new genomes becoming available in a daily bases. The overwhelming list of new genomes to compare has pushed the field of bioinformatics and computational biology forward toward the design and development of methods capable of identifying patterns in a sea of swamping data noise. Despite many advances made in such endeavor, the ever-lasting annoying exceptions to the general patterns remain to pose difficulties in generalizing methods for comparative genomics. In this review, we discuss the different tools devised to undertake the challenge of comparative genomics and some of the exceptions that compromise the generality of such methods. We focus on endosymbiotic bacteria of insects because of their genomic dynamics peculiarities when compared to free-living organisms

    Melanoma: A model for testing new agents in combination therapies

    Get PDF
    Treatment for both early and advanced melanoma has changed little since the introduction of interferon and IL-2 in the early 1990s. Recent data from trials testing targeted agents or immune modulators suggest the promise of new strategies to treat patients with advanced melanoma. These include a new generation of B-RAF inhibitors with greater selectivity for the mutant protein, c-Kit inhibitors, anti-angiogenesis agents, the immune modulators anti-CTLA4, anti-PD-1, and anti-CD40, and adoptive cellular therapies. The high success rate of mutant B-RAF and c-Kit inhibitors relies on the selection of patients with corresponding mutations. However, although response rates with small molecule inhibitors are high, most are not durable. Moreover, for a large subset of patients, reliable predictive biomarkers especially for immunologic modulators have not yet been identified. Progress may also depend on identifying additional molecular targets, which in turn depends upon a better understanding of the mechanisms leading to response or resistance. More challenging but equally important will be understanding how to optimize the treatment of individual patients using these active agents sequentially or in combination with each other, with other experimental treatment, or with traditional anticancer modalities such as chemotherapy, radiation, or surgery. Compared to the standard approach of developing new single agents for licensing in advanced disease, the identification and validation of patient specific and multi-modality treatments will require increased involvement by several stakeholders in designing trials aimed at identifying, even in early stages of drug development, the most effective way to use molecularly guided approaches to treat tumors as they evolve over time
    corecore