28 research outputs found

    The evolutionary consequences of selfish genetic elements

    Get PDF

    Opposite environmental and genetic influences on body size in North American Drosophila pseudoobscura

    Get PDF
    BACKGROUND: Populations of a species often differ in key traits. However, it is rarely known whether these differences are associated with genetic variation and evolved differences between populations, or are instead simply a plastic response to environmental differences experienced by the populations. Here we examine the interplay of plasticity and direct genetic control by investigating temperature-size relationships in populations of Drosophila pseudoobscura from North America. We used 27 isolines from three populations and exposed them to four temperature regimes (16°C, 20°C, 23°C, 26°C) to examine environmental, genetic and genotype-by-environment sources of variance in wing size. RESULTS: By far the largest contribution to variation in wing size came from rearing temperature, with the largest flies emerging from the coolest temperatures. However, we also found a genetic signature that was counter to this pattern as flies originating from the northern, cooler population were consistently smaller than conspecifics from more southern, warmer populations when reared under the same laboratory conditions. CONCLUSIONS: We conclude that local selection on body size appears to be acting counter to the environmental effect of temperature. We find no evidence that local adaptation in phenotypic plasticity can explain this result, and suggest indirect selection on traits closely linked with body size, or patterns of chromosome inversion may instead be driving this relationship. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12862-015-0323-3) contains supplementary material, which is available to authorized users

    Drosophila Sexual Attractiveness in Older Males Is Mediated by Their Microbiota

    Get PDF
    International audienceAge is well known to be a basis for female preference of males. However, the mechanisms underlying age-based choices are not well understood, with several competing theories and little consensus. The idea that the microbiota can affect host mate choice is gaining traction, and in this study we examine whether the male microbiota influences female preference for older individuals in the fruit fly Drosophila pseudoobscura. We find that an intact microbiota is a key component of attractiveness in older males. However, we found no evidence that this decrease in older male attractiveness was simply due to impaired microbiota generally reducing male quality. Instead, we suggest that the microbiota underlies an honest signal used by females to assess male age, and that impaired microbiota disrupt this signal. This suggests that age-based preferences may break down in environments where the microbiota is impaired, for example when individuals are exposed to naturally occurring antibiotics, extreme temperatures, or in animals reared in laboratories on antibiotic supplemented diet

    Functional materials discovery using energy–structure–function maps

    Get PDF
    Molecular crystals cannot be designed in the same manner as macroscopic objects, because they do not assemble according to simple, intuitive rules. Their structures result from the balance of many weak interactions, rather than from the strong and predictable bonding patterns found in metal–organic frameworks and covalent organic frameworks. Hence, design strategies that assume a topology or other structural blueprint will often fail. Here we combine computational crystal structure prediction and property prediction to build energy–structure–function maps that describe the possible structures and properties that are available to a candidate molecule. Using these maps, we identify a highly porous solid, which has the lowest density reported for a molecular crystal so far. Both the structure of the crystal and its physical properties, such as methane storage capacity and guest-molecule selectivity, are predicted using the molecular structure as the only input. More generally, energy–structure–function maps could be used to guide the experimental discovery of materials with any target function that can be calculated from predicted crystal structures, such as electronic structure or mechanical properties

    The impact of surgical delay on resectability of colorectal cancer: An international prospective cohort study

    Get PDF
    AIM: The SARS-CoV-2 pandemic has provided a unique opportunity to explore the impact of surgical delays on cancer resectability. This study aimed to compare resectability for colorectal cancer patients undergoing delayed versus non-delayed surgery. METHODS: This was an international prospective cohort study of consecutive colorectal cancer patients with a decision for curative surgery (January-April 2020). Surgical delay was defined as an operation taking place more than 4 weeks after treatment decision, in a patient who did not receive neoadjuvant therapy. A subgroup analysis explored the effects of delay in elective patients only. The impact of longer delays was explored in a sensitivity analysis. The primary outcome was complete resection, defined as curative resection with an R0 margin. RESULTS: Overall, 5453 patients from 304 hospitals in 47 countries were included, of whom 6.6% (358/5453) did not receive their planned operation. Of the 4304 operated patients without neoadjuvant therapy, 40.5% (1744/4304) were delayed beyond 4 weeks. Delayed patients were more likely to be older, men, more comorbid, have higher body mass index and have rectal cancer and early stage disease. Delayed patients had higher unadjusted rates of complete resection (93.7% vs. 91.9%, P = 0.032) and lower rates of emergency surgery (4.5% vs. 22.5%, P < 0.001). After adjustment, delay was not associated with a lower rate of complete resection (OR 1.18, 95% CI 0.90-1.55, P = 0.224), which was consistent in elective patients only (OR 0.94, 95% CI 0.69-1.27, P = 0.672). Longer delays were not associated with poorer outcomes. CONCLUSION: One in 15 colorectal cancer patients did not receive their planned operation during the first wave of COVID-19. Surgical delay did not appear to compromise resectability, raising the hypothesis that any reduction in long-term survival attributable to delays is likely to be due to micro-metastatic disease

    The effect of short-term exposure to high temperatures on male courtship behaviour and mating success in the fruit fly Drosophila virilis.

    No full text
    Human-induced climate change is leading to higher average global temperatures and increasingly extreme weather events. High temperatures can have obvious effects on animal survival, particularly in ectotherms. However, the temperature at which organisms become sterile may be significantly lower than the temperature at which other biological functions are impaired. In the fruit fly Drosophila virilis, males are sterilized at temperatures above 34 °C, but are still active and able to mate normally. We investigated the male behavioural changes associated with high-temperature fertility loss. We exposed males to a warming treatment of 34.4 °C or 36.6 °C for 4 h, and then recorded their mating behaviour after being allowed to recover for 24 h. Previous work in this species suggests that males exposed to 34.4 °C lose the ability to produce new sperm, but can utilize mature sperm produced before the heat shock. We therefore predicted that these males would increases their courtship rate, and reduce their choosiness, in order to try to ensure a mating before their remaining mature sperm die. In contrast, over two-thirds of males exposed to 36.6 °C are completely sterile. In standard mating trials, earlier exposure to 34.4 °C or 36.6 °C did not affect male courtship behaviour when compared to control males kept at 23 °C. Exposure to high temperatures also did not alter the extent to which males directed courtship toward females of the same species. However, males exposed to 36.6 °C were significantly slower to mate, and had a reduced likelihood of mating, when compared to control males. Overall, exposure to high temperatures did not alter male courtship behaviour, but did lower their likelihood of mating. This suggests that females can distinguish between normal and heat-sterilized males before mating, and that female mate choice may at least partly mitigate the population-level consequences of high-temperature induced male sterility in this species

    Behavioural correlations and aggression in praying mantids

    No full text

    The suppression of a selfish genetic element increases a male's mating success in a fly

    No full text
    AbstractX chromosome meiotic drive (XCMD) kills Y‐bearing sperm during spermatogenesis, leading to the biased transmission of the selfish X chromosome. Despite this strong transmission, some natural XCMD systems remain at low and stable frequencies, rather than rapidly spreading through populations. The reason may be that male carriers can have reduced fitness, as they lose half of their sperm, only produce daughters, and may carry deleterious alleles associated with XCMD. Thus, females may benefit from avoiding mating with male carriers, yielding a further reduction in fitness. Genetic suppressors of XCMD, which block the killing of Y sperm and restore fair Mendelian inheritance, are also common and could prevent the spread of XCMD. However, whether suppressed males are as fit as a wild‐type male remains an open question, as the effect that genetic suppressors may have on a male's mating success is rarely considered. Here, we investigate the mating ability of XCMD males and suppressed XCMD males in comparison to wild‐type males in the fruit fly Drosophila subobscura, where drive remains at a stable frequency of 20% in wild populations where it occurs. We use both competitive and non‐competitive mating trials to evaluate male mating success in this system. We found no evidence that unsuppressed XCMD males were discriminated against. Remarkably, however, their suppressed XCMD counterparts had a higher male mating success compared to wild‐type controls. Unsuppressed XCMD males suffered 12% lower offspring production in comparison to wild‐type males. This cost appears too weak to counter the transmission advantage of XCMD, and thus the factors preventing the spread of XCMD remain unclear.</jats:p

    Sex-specific sterility caused by extreme temperatures is likely to create cryptic changes to the operational sex ratio in Drosophila virilis

    No full text
    Climate change is increasing the frequency and severity of short-term heat shocks that threaten the persistence of natural populations. The effect of thermal stress on natural selection is a common topic of debate, but high temperatures can also influence sexual selection. Typically, males and females of a species can survive at similar extreme temperatures, but males have been shown to lose fertility at lower temperatures than females. Here, we examine how a brief exposure of pupae to high temperatures in the fruit fly Drosophila virilis affects adult fertility in both males and females. We find strong sexual dimorphism in temperature-induced sterility. This has the potential to quickly and unpredictably create populations composed of mostly sterile males and fertile females, resulting in changes to the operational sex ratio (OSR). These disruptions are likely to be cryptic and difficult to measure in the wild, especially considering that males can eventually recover fertility and that sterile males of some species can still copulate. Changes to the OSR in this way are likely to influence sexual selection by favouring females that can discriminate between fertile and sterilised males, and possibly leading to female-female conflict over a limited pool of fertile males. Further research on how cryptic disruptions to the OSR affect sexual selection dynamics is critical for understanding the impact of environmental change on biodiversity.Funding provided by: Adapting to the Challenges of a Changing Environment" (ACCE) Doctoral Training PartnershipCrossref Funder Registry ID: http://dx.doi.org/NoneFunding provided by: Natural Environment Research Council (NERC) [NERCCrossref Funder Registry ID: Award Number: NE/P002692/
    corecore