1,080 research outputs found

    Perceptions of fecal microbiota transplantation for Clostridium difficile infection: factors that predict acceptance.

    Get PDF
    BackgroundDespite the effectiveness of fecal microbiota transplantation (FMT) for treating recurrent Clostridium difficile (C. difficile) infection, some patients are reluctant to accept this therapy. Our study examined attitudes towards FMT and factors that contribute to patients' acceptance of this treatment.MethodsWe distributed patient surveys at a Veterans Affairs hospital, a public hospital, and an academic faculty practice. Multivariable logistic regression was performed, adjusting for factors associated with FMT acceptance on univariate analysis and prior experience with C. difficile infection.ResultsOf 267 patients, only 12% knew of FMT prior to the survey, but 77% would undergo the procedure if medically indicated. On multivariable analysis, those with children and with college degrees or higher were more likely to agree to FMT (odds ratio [OR] 2.11, 95% confidence interval [CI] 1.02-4.35; OR 2.27, 95% CI 1.11-4.60 respectively). Sixty-five respondents (71%) chose colonoscopy as the preferred vehicle for FMT, while nasogastric tube was least preferred. Disease transmission was the most common concern (30%, n=242), and FMT success rate was the least selected concern (9.1%).ConclusionsMost patients in a diverse sample of gastroenterology clinics had no prior knowledge of FMT, but were receptive to the procedure. Having children and higher education levels were predictors for FMT acceptance. Our findings suggest that barriers to FMT utilization may be overcome with counseling about safety concerns. More data on the risk of transmitting diseases or clinical characteristics, such as obesity, through FMT are needed and will be important for the acceptance of this procedure

    Linkages between ecosystem services and human wellbeing: A Nexus Webs approach

    Get PDF
    Ecosystems provide benefits to people, and, in turn, people individually and collectively affect the functioning and wellbeing of ecosystems. Interdependencies between ecosystem services and human wellbeing are critical for the sustainable future of ecosystems and human systems alike, but they are not well understood. We offer an account of these interdependencies from the perspective of social psychology. Using the Nexus Webs framework (Overton et al., 2013), we explore how a fuller knowledge of coupled social-ecological systems will benefit resource management and decision-making in contested spaces. We challenge the tacit notion that ecosystem health and human wellbeing are linearly related, and suggest human wellbeing may affect ecosystem health. We outline the multiple construals of the construct ‘wellbeing’, and identify additional psychological constructs of importance. We examine how the benefits of ecosystems for human wellbeing may accrue differently across regions and across people. Four areas for future research are identified

    Nutritional Intervention Restores Muscle but Not Kidney Phenotypes in Adult Calcineurin Aα Null Mice

    Get PDF
    Mice lacking the α isoform of the catalytic subunit of calcineurin (CnAα) were first reported in 1996 and have been an important model to understand the role of calcineurin in the brain, immune system, bones, muscle, and kidney. Research using the mice has been limited, however, by failure to thrive and early lethality of most null pups. Work in our laboratory led to the rescue of CnAα-/- mice by supplemental feeding to compensate for a defect in salivary enzyme secretion. The data revealed that, without intervention, knockout mice suffer from severe caloric restriction. Since nutritional deprivation is known to significantly alter development, it is imperative that previous conclusions based on CnAα-/- mice are revisited to determine which aspects of the phenotype were attributable to caloric restriction versus a direct role for CnAα. In this study, we find that defects in renal development and function persist in adult CnAα-/- mice including a significant decrease in glomerular filtration rate and an increase in blood urea nitrogen levels. These data indicate that impaired renal development we previously reported was not due to caloric restriction but rather a specific role for CnAα in renal development and function. In contrast, we find that rather than being hypoglycemic, rescued mice are mildly hyperglycemic and insulin resistant. Examination of muscle fiber types shows that previously reported reductions in type I muscle fibers are no longer evident in rescued null mice. Rather, loss of CnAα likely alters insulin response due to a reduction in insulin receptor substrate-2 (IRS2) expression and signaling in muscle. This study illustrates the importance of re-examining the phenotypes of CnAα-/- mice and the advances that are now possible with the use of adult, rescued knockout animals

    Changing Beliefs about Trauma: A Qualitative Study of Cognitive Processing Therapy

    Get PDF
    Background: Controlled qualitative methods complement quantitative treatment outcome research and enable a more thorough understanding of the effects of therapy and the suspected mechanisms of action. Aims: Thematic analyses were used to examine outcomes of cognitive processing therapy (CPT) for posttraumatic stress disorder (PTSD) in a randomized controlled trial of individuals diagnosed with military-related PTSD ( n = 15). Method: After sessions 1 and 11, participants wrote “impact statements” describing their appraisals of their trauma and beliefs potentially impacted by traumatic events. Trained raters coded each of these statements using a thematic coding scheme. Results: An analysis of thematic coding revealed positive changes over the course of therapy in participants’ perspective on their trauma and their future, supporting the purported mechanisms of CPT. Conclusion: Implications of this research for theory and clinical practice are discussed

    Improvement in Prediction of Coronary Heart Disease Risk over Conventional Risk Factors Using SNPs Identified in Genome-Wide Association Studies

    Get PDF
    We examined whether a panel of SNPs, systematically selected from genome-wide association studies (GWAS), could improve risk prediction of coronary heart disease (CHD), over-and-above conventional risk factors. These SNPs have already demonstrated reproducible associations with CHD; here we examined their use in long-term risk prediction.SNPs identified from meta-analyses of GWAS of CHD were tested in 840 men and women aged 55-75 from the Edinburgh Artery Study, a prospective, population-based study with 15 years of follow-up. Cox proportional hazards models were used to evaluate the addition of SNPs to conventional risk factors in prediction of CHD risk. CHD was classified as myocardial infarction (MI), coronary intervention (angioplasty, or coronary artery bypass surgery), angina and/or unspecified ischaemic heart disease as a cause of death; additional analyses were limited to MI or coronary intervention. Model performance was assessed by changes in discrimination and net reclassification improvement (NRI).There were significant improvements with addition of 27 SNPs to conventional risk factors for prediction of CHD (NRI of 54%, P<0.001; C-index 0.671 to 0.740, P = 0.001), as well as MI or coronary intervention, (NRI of 44%, P<0.001; C-index 0.717 to 0.750, P = 0.256). ROC curves showed that addition of SNPs better improved discrimination when the sensitivity of conventional risk factors was low for prediction of MI or coronary intervention.There was significant improvement in risk prediction of CHD over 15 years when SNPs identified from GWAS were added to conventional risk factors. This effect may be particularly useful for identifying individuals with a low prognostic index who are in fact at increased risk of disease than indicated by conventional risk factors alone

    Individual correlates of podoconiosis in areas of varying endemicity: a case-control study

    Get PDF
    BACKGROUND Podoconiosis is a non-filarial form of elephantiasis resulting in lymphedema of the lower legs. Previous studies have suggested that podoconiosis arises from the interplay of individual and environmental factors. Here, our aim was to understand the individual-level correlates of podoconiosis by comparing 460 podoconiosis-affected individuals and 707 unaffected controls. METHODS/PRINCIPAL FINDINGS This was a case-control study carried out in six kebeles (the lowest governmental administrative unit) in northern Ethiopia. Each kebele was classified into one of three endemicity levels: 'low' (prevalence 5%). A total of 142 (30.7%) households had two or more cases of podoconiosis. Compared to controls, the majority of the cases, especially women, were less educated (OR = 1.7, 95% CI = 1.3 to 2.2), were unmarried (OR = 3.4, 95% CI = 2.6-4.6) and had lower income (t = -4.4, p<0.0001). On average, cases started wearing shoes ten years later than controls. Among cases, age of first wearing shoes was positively correlated with age of onset of podoconiosis (r = 0.6, t = 12.5, p<0.0001). Among all study participants average duration of shoe wearing was less than 30 years. Between both cases and controls, people in 'high' and 'medium' endemicity kebeles were less likely than people in 'low' endemicity areas to 'ever' have owned shoes (OR = 0.5, 95% CI = 0.4-0.7). CONCLUSIONS Late use of shoes, usually after the onset of podoconiosis, and inequalities in education, income and marriage were found among cases, particularly among females. There were clustering of cases within households, thus interventions against podoconiosis will benefit from household-targeted case tracing. Most importantly, we identified a secular increase in shoe-wearing over recent years, which may give opportunities to promote shoe-wearing without increasing stigma among those at high risk of podoconiosis

    Functional genomics with a comprehensive library of transposon mutants for the sulfate-reducing bacterium Desulfovibrio alaskensis G20.

    Get PDF
    UnlabelledThe genomes of sulfate-reducing bacteria remain poorly characterized, largely due to a paucity of experimental data and genetic tools. To meet this challenge, we generated an archived library of 15,477 mapped transposon insertion mutants in the sulfate-reducing bacterium Desulfovibrio alaskensis G20. To demonstrate the utility of the individual mutants, we profiled gene expression in mutants of six regulatory genes and used these data, together with 1,313 high-confidence transcription start sites identified by tiling microarrays and transcriptome sequencing (5' RNA-Seq), to update the regulons of Fur and Rex and to confirm the predicted regulons of LysX, PhnF, PerR, and Dde_3000, a histidine kinase. In addition to enabling single mutant investigations, the D.&nbsp;alaskensis G20 transposon mutants also contain DNA bar codes, which enables the pooling and analysis of mutant fitness for thousands of strains simultaneously. Using two pools of mutants that represent insertions in 2,369 unique protein-coding genes, we demonstrate that the hypothetical gene Dde_3007 is required for methionine biosynthesis. Using comparative genomics, we propose that Dde_3007 performs a missing step in methionine biosynthesis by transferring a sulfur group to O-phosphohomoserine to form homocysteine. Additionally, we show that the entire choline utilization cluster is important for fitness in choline sulfate medium, which confirms that a functional microcompartment is required for choline oxidation. Finally, we demonstrate that Dde_3291, a MerR-like transcription factor, is a choline-dependent activator of the choline utilization cluster. Taken together, our data set and genetic resources provide a foundation for systems-level investigation of a poorly studied group of bacteria of environmental and industrial importance.ImportanceSulfate-reducing bacteria contribute to global nutrient cycles and are a nuisance for the petroleum industry. Despite their environmental and industrial significance, the genomes of sulfate-reducing bacteria remain poorly characterized. Here, we describe a genetic approach to fill gaps in our knowledge of sulfate-reducing bacteria. We generated a large collection of archived, transposon mutants in Desulfovibrio alaskensis G20 and used the phenotypes of these mutant strains to infer the function of genes involved in gene regulation, methionine biosynthesis, and choline utilization. Our findings and mutant resources will enable systematic investigations into gene function, energy generation, stress response, and metabolism for this important group of bacteria

    From the Cover: Assignment of an Essential Role for the Neurospora Frequency Gene in Circadian Entrainment to Temperature Cycles

    Get PDF
    Circadian systems include slave oscillators and central pacemakers, and the cores of eukaryotic circadian clocks described to date are composed of transcription and translation feedback loops (TTFLs). In the model system Neurospora, normal circadian rhythmicity requires a TTFL in which a White Collar complex (WCC) activates expression of the frequency (frq) gene, and the FRQ protein feeds back to attenuate that activation. To further test the centrality of this TTFL to the circadian mechanism in Neurospora, we used low-amplitude temperature cycles to compare WT and frq-null strains under conditions in which a banding rhythm was elicited. WT cultures were entrained to these temperature cycles. Unlike those normal strains, however, frq-null mutants did not truly entrain to the same cycles. Their peaks and troughs always occurred in the cold and warm periods, respectively, strongly suggesting that the rhythm in Neurospora lacking frq function simply is driven by the temperature cycles. Previous reports suggested that a FRQ-less oscillator (FLO) could be entrained to temperature cycles, rather than being driven, and speculated that the FLO was the underlying circadian-rhythm generator. These inferences appear to derive from the use of a phase reference point affected by both the changing waveform and the phase of the oscillation. Examination of several other phase markers as well as results of additional experimental tests indicate that the FLO is, at best, a slave oscillator to the TTFL, which underlies circadian rhythm generation in Neurospora
    corecore