541 research outputs found

    Excitations and benchmark ensemble density functional theory for two electrons

    Full text link
    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange (SEHX), is derived. Exact conditions that are proven include the signs of the correlation energy components, the virial theorem for both exchange and correlation, and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.Comment: 15 pages, supplemental material pd

    Dissipation and spontaneous symmetry breaking in brain dynamics

    Full text link
    We compare the predictions of the dissipative quantum model of brain with neurophysiological data collected from electroencephalograms resulting from high-density arrays fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional brain imaging in relation to behavior reveals the formation of coherent domains of synchronized neuronal oscillatory activity and phase transitions predicted by the dissipative model.Comment: Restyled, slight changes in title and abstract, updated bibliography, J. Phys. A: Math. Theor. Vol. 41 (2008) in prin

    Synthetic Quantum Systems

    Get PDF
    So far proposed quantum computers use fragile and environmentally sensitive natural quantum systems. Here we explore the new notion that synthetic quantum systems suitable for quantum computation may be fabricated from smart nanostructures using topological excitations of a stochastic neural-type network that can mimic natural quantum systems. These developments are a technological application of process physics which is an information theory of reality in which space and quantum phenomena are emergent, and so indicates the deep origins of quantum phenomena. Analogous complex stochastic dynamical systems have recently been proposed within neurobiology to deal with the emergent complexity of biosystems, particularly the biodynamics of higher brain function. The reasons for analogous discoveries in fundamental physics and neurobiology are discussed.Comment: 16 pages, Latex, 1 eps figure fil

    P300 and uncertainty reduction in a concept identification task.

    Get PDF
    The relationship between the amplitude of P300, the mean amplitude of the Slow Wave, and uncertainty reduction after (dis)confirmation of hypotheses was studied in a Concept-Identification task. The subjects had to categorize stimuli according to a conceptual rule (joint denial or exclusion) and to rate the confidence that their classification was correct. Three types of feedback were distinguished: confirming (subject's categorization was correct), disconfirming (subject's categorization was incorrect), and non-informative feedback. The EEG was averaged separately according to the three types of feedback and the two confidence ratings (low, high). The data showed the predicted interaction between type of feedback and confidence level. A larger P300 amplitude turned up after confirming feedback when the subject was less confident, than when he was more confident. The reverse was found after disconfirming feedback. The P300 amplitude after non-informative feedback was not influenced by confidence. The mean amplitude of the Slow Wave showed approximately the same interaction pattern. The results were interpreted in terms of changes in the probability of hypotheses which subjects use to categorize stimuli in a Concept-Identification task

    Variability in the articulation and perception of a word

    Get PDF
    The words making up a speaker’s mental lexicon may be stored as abstract phonological representations or else they may be stored as detailed acoustic-phonetic representations. The speaker’s articulatory gestures intended to represent a word show relatively high variability in spontaneous speech. The aim of this paper is to explore the acoustic-phonetic patterns of the Hungarian word akkor ‘then, at that time’. Ten speakers’ recorded spontaneous speech with a total duration of 255 minutes and containing 286 occurrences of akkor were submitted to analysis. Durational and frequency patterns were measured by means of the Praat software. The results obtained show higher variability both within and across speakers than it had been expected. Both the durations of the words and those of the speech sounds, as well as the vowel formants, turned out to significantly differ across speakers. In addition, the results showed considerable within-speaker variation as well. The correspondence between variability in the objective acoustic-phonetic data and the flexibility and adaptive nature of the mental representation of a word will be discussed.For the perception experiments, two speakers of the previous experiment were selected whose 48 words were then used as speech material. The listeners had to judge the quality of the words they heard using a five-point scale. The results confirmed that the listeners used diverse strategies and representations depending on the acoustic-phonetic parameters of the series of occurrences of akkor

    The role of conviction and narrative in decision-making under radical uncertainty

    Get PDF
    We propose conviction narrative theory (CNT) to broaden decision-making theory for it better to understand and analyse how subjectively means-end rational actors cope in contexts in which the traditional assumptions in decision-making models fail to hold. Conviction narratives enable actors to draw on their beliefs, causal models and rules of thumb to identify opportunities worth acting on, to simulate the future outcome of their actions and to feel sufficiently convinced to act. The framework focuses on how narrative and emotion combine to allow actors to deliberate and to select actions that they think will produce the outcomes they desire. It specifies connections between particular emotions and deliberative thought, hypothesizing that approach and avoidance emotions evoked during narrative simulation play a crucial role. Two mental states, Divided and Integrated, in which narratives can be formed or updated, are introduced and used to explain some familiar problems that traditional models cannot

    The “conscious pilot”—dendritic synchrony moves through the brain to mediate consciousness

    Get PDF
    Cognitive brain functions including sensory processing and control of behavior are understood as “neurocomputation” in axonal–dendritic synaptic networks of “integrate-and-fire” neurons. Cognitive neurocomputation with consciousness is accompanied by 30- to 90-Hz gamma synchrony electroencephalography (EEG), and non-conscious neurocomputation is not. Gamma synchrony EEG derives largely from neuronal groups linked by dendritic–dendritic gap junctions, forming transient syncytia (“dendritic webs”) in input/integration layers oriented sideways to axonal–dendritic neurocomputational flow. As gap junctions open and close, a gamma-synchronized dendritic web can rapidly change topology and move through the brain as a spatiotemporal envelope performing collective integration and volitional choices correlating with consciousness. The “conscious pilot” is a metaphorical description for a mobile gamma-synchronized dendritic web as vehicle for a conscious agent/pilot which experiences and assumes control of otherwise non-conscious auto-pilot neurocomputation

    Melting a Hubbard dimer: benchmarks of 'ALDA' for quantum thermodynamics

    Get PDF
    The competition between evolution time, interaction strength, and temperature challenges our understanding of many-body quantum systems out-of-equilibrium. Here we consider a benchmark system, the Hubbard dimer, which allows us to explore all the relevant regimes and calculate exactly the related average quantum work. At difference with previous studies, we focus on the effect of increasing temperature, and show how this can turn competition between many-body interactions and driving field into synergy. We then turn to use recently proposed protocols inspired by density functional theory to explore if these effects could be reproduced by using simple approximations. We find that, up to and including intermediate temperatures, a method which borrows from ground-state adiabatic local density approximation improves dramatically the estimate for the average quantum work, including, in the adiabatic regime, when correlations are strong. However at high temperature and at least when based on the pseudo-LDA, this method fails to capture the counterintuitive qualitative dependence of the quantum work with interaction strength, albeit getting the quantitative estimates relatively close to the exact results
    corecore