15 research outputs found

    Inflammation, fibrosis and skeletal muscle regeneration in LGMDR9 are orchestrated by macrophages

    Get PDF
    Aims: Variable degrees of inflammation, necrosis, regeneration and fibrofatty replacement are part of the pathological spectrum of the dystrophic process in alpha dystroglycanopathy LGMDR9 (FKRP-related, OMIM #607155), one of the most prevailing types of LGMDs worldwide. Inflammatory processes and their complex interplay with vascular, myogenic and mesenchymal cells may have a major impact on disease development. The purpose of our study is to describe the specific immune morphological features in muscle tissue of patients with LGMDR9 to enable a better understanding of the phenotype of muscle damage leading to disease progression. Methods: We have analysed skeletal muscle biopsies of 17 patients genetically confirmed as having LGMDR9 by histopathological and molecular techniques. Results: We identified CD206+ MHC class II+ and STAT6+ immune-repressed macrophages dominating the endomysial infiltrate in areas of myofibre regeneration and fibrosis. Additionally, PDGFRÎČ+ pericytes were located around MHC class II+ activated capillaries residing in close proximity to areas of fibrosis and regenerating fibres. Expression of VEGF was found on many regenerating neonatal myosin+ fibres, myofibres and CD206+ macrophages also co-expressed VEGF. Conclusion: Our results show characteristic immune inflammatory features in LGMDR9 and more specifically shed light on the predominant role of macrophages and their function in vascular organisation, fibrosis and myogenesis. Understanding disease-specific immune phenomena potentially inform about possibilities for anti-fibrotic and anti-inflammatory therapeutic strategies, which may complement Ribitol replacement and gene therapies for LGMDR9 that may be available in the future

    Systemic sclerosis-associated myositis features minimal inflammation and characteristic capillary pathology

    Get PDF
    Systemic sclerosis represents a chronic connective tissue disease featuring fibrosis, vasculopathy and autoimmunity, affecting skin, multiple internal organs, and skeletal muscles. The vasculopathy is considered obliterative, but its pathogenesis is still poorly understood. This may partially be due to limitations of conventional transmission electron microscopy previously being conducted only in single patients. The aim of our study was therefore to precisely characterize immune inflammatory features and capillary morphology of systemic sclerosis patients suffering from muscle weakness. In this study, we identified 18 individuals who underwent muscle biopsy because of muscle weakness and myalgia in a cohort of 367 systemic sclerosis patients. We performed detailed conventional and immunohistochemical analysis and large-scale electron microscopy by digitizing entire sections for in-depth ultrastructural analysis. Muscle biopsies of 12 of these 18 patients (67%) presented minimal features of myositis but clear capillary alteration, which we termed minimal myositis with capillary pathology (MMCP). Our study provides novel findings in systemic sclerosis-associated myositis. First, we identified a characteristic and specific morphological pattern termed MMCP in 67% of the cases, while the other 33% feature alterations characteristic of other overlap syndromes. This is also reflected by a relatively homogeneous clinical picture among MMCP patients. They have milder disease with little muscle weakness and a low prevalence of interstitial lung disease (20%) and diffuse skin involvement (10%) and no cases of either pulmonary arterial hypertension or renal crisis. Second, large-scale electron microscopy, introducing a new level of precision in ultrastructural analysis, revealed a characteristic capillary morphology with basement membrane thickening and reduplications, endothelial activation and pericyte proliferation. We provide open-access pan-and-zoom analysis to our datasets, enabling critical discussion and data mining. We clearly highlight characteristic capillary pathology in skeletal muscles of systemic sclerosis patients

    Sequestosome‐1 (p62) expression reveals chaperone‐assisted selective autophagy in immune‐mediated necrotizing myopathies

    Get PDF
    Diffuse myofiber necrosis in the context of inflammatory myopathy is the hallmark of immune-mediated necrotizing myopathy (IMNM). We have previously shown that skeletal muscle fibers of IMNM patients may display nonrimmed vacuoles and sarcoplasmic irregularities. The dysfunctional chaperone activity has been linked to the defective assembly of skeletal muscle proteins and their degradation via lysosomes, autophagy and the proteasomal machinery. This study was undertaken to highlight a chaperone-assisted selective autophagy (CASA) pathway, functionally involved in protein homeostasis, cell stress and the immune response in skeletal muscle of IMNM patients. Skeletal muscle biopsies from 54 IMNM patients were analyzed by immunostaining, as well as by qPCR. Eight biopsies of sIBM patients served as pathological controls, and eight biopsies of nondisease control subjects were included. Alteration of autophagy was detectable in all IMNM biopsy samples highlighted via a diffuse sarcoplasmic staining pattern by p62 and LC3 independent of vacuoles. This pattern was at variance with the coarse focal staining pattern mostly confined to rimmed vacuoles in sIBM. Colocalization of p62 with the chaperone proteins HSP70 and alpha B-crystalline points to the specific targeting of misfolded proteins to the CASA machinery. Bcl2-associated athanogene 3 (BAG3) positivity of these fibers emphasizes the selectivity of autophagy processes and these fibers also express MHC class I sarcolemma. Expression of genes involved in autophagy and endoplasmic reticulum (ER) stress pathways studied here is significantly upregulated in IMNM. We highlight that vacuoles without sarcolemmal features may arise in IMNM muscle biopsies, and they must not be confounded with sIBM-specific vacuoles. Further, we show the activation of selective autophagy and emphasize the role of chaperones in this context. CASA occurs in IMNM muscle, and specific molecular pathways of autophagy differ from the ones in sIBM, with p62 as a unique identifier of this process

    Common and distinct immunological aspects in acquired inflammatory myopathies and inherited muscular dystrophy

    Get PDF
    Die heterogene Gruppe der Myopathien kann sowohl die Funktion des Muskels beeinflussen, als auch andere Organsysteme. Erworbenen Muskelerkrankungen sind theoretisch behandelbar, jedoch stehen zumeist nur sehr unspezifische Behandlungsoptionen zur VerfĂŒgung, wĂ€hrend fĂŒr vererbte Formen bisher keine kausalen Therapiemöglichkeiten bekannt sind. In dieser Arbeit wurden drei verschiedene Muskelerkrankungen untersucht. Gemeinsam ist ihnen ein jeweils charakteristischer Einstrom von EntzĂŒndungszellen, wobei die Zusammensetzung des Zellinfiltrates (z.B. Lymphozyten oder Makrophagen) bei den verschieden Erkrankungen unterschiedlich war. Weiterhin unterscheidet sich das zugrunde liegende Zytokinmilieu fĂŒr die einzelnen untersuchten EntitĂ€ten. Daher war es Ziel der Arbeit, die genauen Interaktionen zwischen den Immunzellen zu untersuchen, sowie die charakteristischen PhĂ€nomene der Erkrankungen (Hypoxie, EntzĂŒndung und Fibrose). Nekrotisierende Myopathien können sowohl durch eine immun-vermittelte Genese, als auch durch Kontakt mit toxischen Substanzen ausgelöst werden und beide Subgruppen können klar durch morphologische Kriterien, als auch durch spezielle Immunaspekte unterschieden werden. Makrophagen waren hier die vorherrschende Zellpopulation und im gesamten Muskel verteilt. Patienten mit Dermatomyositis dagegen zeigten ein typisches perifaszikulĂ€res Atrophiemuster und hypoxische Effekte, wobei beide PhĂ€nomene deutlich ausgeprĂ€gter bei juvenilen, als bei adulten Patienten vorkamen. Erbliche Myopathien (z.B. Muskeldystrophie Duchenne) können ebenfalls entzĂŒndliche Infiltrate aufweisen und die Entwicklung von Fibrose in der Skelettmuskulatur ist dabei ein Hauptkriterium der Muskelfaserdegeneration. Ein neu entwickelter computer-basierter Algorithmus wurde genutzt, um diese Entwicklung zu quantifizieren. Die Menge an Bindegewebe steigt mit dem Alter der Patienten, wĂ€hrend bei Ă€lteren Patienten außerdem ein fettgewebiger Umbau ein wichtiger Aspekt der Pathologie war.The heterogeneous group of myopathies can affect the skeletal muscle or other organ systems and comprise a huge number of different entities. Acquired myopathies are potentially treatable, but there are often only unspecific treatment options, while there is no causative cure for inherited forms of myopathies. In this work, three different entities were analyzed, which all share common aspects of the immune response, but also feature distinct immunological aspects as well. They have an inflammatory part in common, which is mainly regulated by influx of immune cells. However, the composition of these cellular infiltrates (e.g. lymphocytes or macrophages) was varying between the diseases. In addition, the respective cytokine milieu was highly specific in the examined entities. Thus, the aim of the study was to precisely examine interactions between immune cells, and analyze characteristic pathological phenomena (hypoxia, inflammation and fibrosis). Necrotizing myopathies have an immune-mediated background or showed a toxic aetiology and both sub-groups can be distinguished by their morphological characteristics and certain immune aspects. Here macrophages are the predominant cell population and are spread throughout the muscle. Analyses of patients suffering from dermatomyositis showed a typical perifascicular pattern of atrophy, as well as effects of hypoxia and the described features are in general more pronounced in juvenile dermatomyositis than in the adult form. Inherited myopathies (e.g. Duchenne muscular dystrophy) harbor significant inflammatory infiltrates as well and development of fibrosis was a major feature of skeletal muscle degeneration. A computer-based algorithm was used to quantify fibrosis. The amount of connective tissue increased with the age of patients, while at late stage of disease fatty transformation was an additional important issue

    Differential roles of hypoxia and innate immunity in juvenile and adult dermatomyositis

    Get PDF
    Dermatomyositis (DM) can occur in both adults and juveniles with considerable clinical differences. The links between immune-mediated mechanisms and vasculopathy with respect to development of perifascicular pathology are incompletely understood. We investigated skeletal muscle from newly diagnosed, treatment-naive juvenile (jDM) and adult dermatomyositis (aDM) patients focusing on hypoxia-related pathomechanisms, vessel pathology, and immune mechanisms especially in the perifascicular region. Therefore, we assessed the skeletal muscle biopsies from 21 aDM, and 15 jDM patients by immunohistochemistry and electron microscopy. Transcriptional analyses of genes involved in hypoxia, as well as in innate and adaptive immunity were performed by quantitative Polymerase chain reaction (qPCR) of whole tissue cross sections including perifascicular muscle fibers. Through these analysis, we found that basic features of DM, like perifascicular atrophy and inflammatory infiltrates, were present at similar levels in jDM and aDM patients. However, jDM was characterized by predominantly hypoxia-driven pathology in perifascicular small fibers and by macrophages expressing markers of hypoxia. A more pronounced regional loss of capillaries, but no relevant activation of type-1 Interferon (IFN)-associated pathways was noted. Conversely, in aDM, IFN-related genes were expressed at significantly elevated levels, and Interferon-stimulated gene (ISG) 15 was strongly positive in small perifascicular fibers whereas hypoxia-related mechanisms did not play a significant role. In our study we could provide new molecular data suggesting a conspicuous pathophysiological 'dichotomy' between jDM and aDM: In jDM, perifascicular atrophy is tightly linked to hypoxia-related pathology, and poorly to innate immunity. In aDM, perifascicular atrophy is prominently associated with molecules driving innate immunity, while hypoxia-related mechanisms seem to be less relevant

    New Insights into the Neuromyogenic Spectrum of a Gain of Function Mutation in SPTLC1

    No full text
    Serine palmitoyltransferase long chain base subunit 1 (SPTLC1) encodes a serine palmitoyltransferase (SPT) resident in the endoplasmic reticulum (ER). Pathological SPTLC1 variants cause a form of hereditary sensory and autonomic neuropathy (HSAN1A), and have recently been linked to unrestrained sphingoid base synthesis, causing a monogenic form of amyotrophic lateral sclerosis (ALS). It was postulated that the phenotypes associated with dominant variants in SPTLC1 may represent a continuum between neuropathy and ALS in some cases, complicated by additional symptoms such as cognitive impairment. A biochemical explanation for this clinical observation does not exist. By performing proteomic profiling on immortalized lymphoblastoid cells derived from one patient harbouring an alanine to serine amino acid substitution at position 20, we identified a subset of dysregulated proteins playing significant roles in neuronal homeostasis and might have a potential impact on the manifestation of symptoms. Notably, the identified p.(A20S)-SPTLC1 variant is associated with decrease of transcript and protein level. Moreover, we describe associated muscle pathology findings, including signs of mild inflammation accompanied by dysregulation of respective markers on both the protein and transcript levels. By performing coherent anti-Stokes Raman scattering microscopy, presence of protein and lipid aggregates could be excluded

    Inflammation, fibrosis and skeletal muscle regeneration in LGMDR9 are orchestrated by macrophages

    No full text
    Aims: Variable degrees of inflammation, necrosis, regeneration and fibrofatty replacement are part of the pathological spectrum of the dystrophic process in alpha dystroglycanopathy LGMDR9 (FKRP-related, OMIM #607155), one of the most prevailing types of LGMDs worldwide. Inflammatory processes and their complex interplay with vascular, myogenic and mesenchymal cells may have a major impact on disease development. The purpose of our study is to describe the specific immune morphological features in muscle tissue of patients with LGMDR9 to enable a better understanding of the phenotype of muscle damage leading to disease progression. Methods: We have analysed skeletal muscle biopsies of 17 patients genetically confirmed as having LGMDR9 by histopathological and molecular techniques. Results: We identified CD206+ MHC class II+ and STAT6+ immune-repressed macrophages dominating the endomysial infiltrate in areas of myofibre regeneration and fibrosis. Additionally, PDGFRÎČ+ pericytes were located around MHC class II+ activated capillaries residing in close proximity to areas of fibrosis and regenerating fibres. Expression of VEGF was found on many regenerating neonatal myosin+ fibres, myofibres and CD206+ macrophages also co-expressed VEGF. Conclusion: Our results show characteristic immune inflammatory features in LGMDR9 and more specifically shed light on the predominant role of macrophages and their function in vascular organisation, fibrosis and myogenesis. Understanding disease-specific immune phenomena potentially inform about possibilities for anti-fibrotic and anti-inflammatory therapeutic strategies, which may complement Ribitol replacement and gene therapies for LGMDR9 that may be available in the future

    Clinical Course, Myopathology and Challenge of Therapeutic Intervention in Pediatric Patients with Autoimmune-Mediated Necrotizing Myopathy

    No full text
    (1) Background: Immune–mediated necrotizing myopathy (IMNM) is a rare form of inflammatory muscle disease which is even more rare in pediatric patients. To increase the knowledge of juvenile IMNM, we here present the clinical findings on long-term follow-up, myopathological changes, and therapeutic strategies in two juvenile patients. (2) Methods: Investigations included phenotyping, determination of antibody status, microscopy on muscle biopsies, MRI, and response to therapeutic interventions. (3) Results: Anti-signal recognition particle (anti-SRP54) and anti- 3-hydroxy-3-methylglutarly coenzyme A reductase (anti-HMGCR) antibodies (Ab) were detected in the patients. Limb girdle presentation, very high CK-levels, and a lack of skin rash at disease-manifestation and an absence of prominent inflammatory signs accompanied by an abnormal distribution of α-dystroglycan in muscle biopsies initially hinted toward a genetically caused muscle dystrophy. Further immunostaining studies revealed an increase of proteins involved in chaperone-assisted autophagy (CASA), a finding already described in adult IMNM-patients. Asymmetrical muscular weakness was present in the anti-SRP54 positive Ab patient. After initial stabilization under therapy with intravenous immunoglobulins and methotrexate, both patients experienced a worsening of their symptoms and despite further therapy escalation, developed a permanent reduction of their muscle strength and muscular atrophy. (4) Conclusions: Diagnosis of juvenile IMNM might be complicated by asymmetric muscle weakness, lack of cutaneous features, absence of prominent inflammatory changes in the biopsy, and altered α-dystroglycan

    Systemic sclerosis-associated myositis features minimal inflammation and characteristic capillary pathology

    No full text
    Systemic sclerosis represents a chronic connective tissue disease featuring fibrosis, vasculopathy and autoimmunity, affecting skin, multiple internal organs, and skeletal muscles. The vasculopathy is considered obliterative, but its pathogenesis is still poorly understood. This may partially be due to limitations of conventional transmission electron microscopy previously being conducted only in single patients. The aim of our study was therefore to precisely characterize immune inflammatory features and capillary morphology of systemic sclerosis patients suffering from muscle weakness. In this study, we identified 18 individuals who underwent muscle biopsy because of muscle weakness and myalgia in a cohort of 367 systemic sclerosis patients. We performed detailed conventional and immunohistochemical analysis and large-scale electron microscopy by digitizing entire sections for in-depth ultrastructural analysis. Muscle biopsies of 12 of these 18 patients (67%) presented minimal features of myositis but clear capillary alteration, which we termed minimal myositis with capillary pathology (MMCP). Our study provides novel findings in systemic sclerosis-associated myositis. First, we identified a characteristic and specific morphological pattern termed MMCP in 67% of the cases, while the other 33% feature alterations characteristic of other overlap syndromes. This is also reflected by a relatively homogeneous clinical picture among MMCP patients. They have milder disease with little muscle weakness and a low prevalence of interstitial lung disease (20%) and diffuse skin involvement (10%) and no cases of either pulmonary arterial hypertension or renal crisis. Second, large-scale electron microscopy, introducing a new level of precision in ultrastructural analysis, revealed a characteristic capillary morphology with basement membrane thickening and reduplications, endothelial activation and pericyte proliferation. We provide open-access pan-and-zoom analysis to our datasets, enabling critical discussion and data mining. We clearly highlight characteristic capillary pathology in skeletal muscles of systemic sclerosis patients

    Nuclear actin aggregation is a hallmark of anti-synthetase syndrome-induced dysimmune myopathy

    No full text
    To analyze antisynthetase syndrome-associated myositis by modern myopathologic methods and to define its place in the spectrum of idiopathic inflammatory myopathies (IIMs).status: publishe
    corecore