66 research outputs found

    Follow-up study of the graduates of Chinook, Montana High School for the years 1950-1954

    Get PDF

    Automated Stable Isotope Sampling of Gaseous Elemental Mercury (ISO-GEM): Insights into GEM Emissions from Building Surfaces

    Get PDF
    Atmospheric monitoring networks quantify gaseous elemental mercury (GEM) concentrations, but not isotopic compositions. Here, we present a new method for automated and quantitative stable isotope sampling of GEM (ISO-GEM) at the outlet of a commercial Hg analyzer. A programmable multivalve manifold selects Hg at the analyzer inlet and outlet based on specific criteria (location, time, GEM concentration, auxiliary threshold). Outlet Hg recovery was tested for gold traps, oxidizing acidic solution traps, and activated carbon traps. We illustrate the ISO-GEM method in an exploratory study on the effect of building walls on local GEM. We find that GEM concentrations directly at the building surface (wall inlet) are significantly enhanced (mean 3.8 ± 1.8 ng/m; 3; ) compared to 3 m from the building wall (free inlet) (mean 1.5 ± 0.4 ng/m; 3; ). GEM δ; 202; Hg (-1.26‰ ± 0.41‰, 1 SD, n = 16) and Δ; 199; Hg (-0.05‰ ± 0.10‰, 1 SD, n = 16) at the wall inlet were different from ambient GEM δ; 202; Hg (0.76‰ ± 0.09‰, 1 SD, n = 16) and Δ; 199; Hg (-0.21‰ ± 0.05‰, 1 SD, n = 16) at the free inlet. The isotopic fingerprint of GEM at the wall inlet suggests that GEM emission from the aluminum building surface affected local GEM concentration measurements. These results illustrate the versatility of the automated Hg isotope sampling

    Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America

    Get PDF
    Dry deposition of speciated mercury, i.e., gaseous oxidized mercury (GOM), particulate-bound mercury (PBM), and gaseous elemental mercury (GEM), was estimated for the year 2008–2009 at 19 monitoring locations in eastern and central North America. Dry deposition estimates were obtained by combining monitored two- to four-hourly speciated ambient concentrations with modeled hourly dry deposition velocities (<i>V</i><sub>d</sub>) calculated using forecasted meteorology. Annual dry deposition of GOM+PBM was estimated to be in the range of 0.4 to 8.1 μg m<sup>−2</sup> at these locations with GOM deposition being mostly five to ten times higher than PBM deposition, due to their different modeled <i>V</i><sub>d</sub> values. Net annual GEM dry deposition was estimated to be in the range of 5 to 26 μg m<sup>−2</sup> at 18 sites and 33 μg m<sup>−2</sup> at one site. The estimated dry deposition agrees very well with limited surrogate-surface dry deposition measurements of GOM and PBM, and also agrees with litterfall mercury measurements conducted at multiple locations in eastern and central North America. This study suggests that GEM contributes much more than GOM+PBM to the total dry deposition at the majority of the sites considered here; the only exception is at locations close to significant point sources where GEM and GOM+PBM contribute equally to the total dry deposition. The relative magnitude of the speciated dry deposition and their good comparisons with litterfall deposition suggest that mercury in litterfall originates primarily from GEM, which is consistent with the limited number of previous field studies. The study also supports previous analyses suggesting that total dry deposition of mercury is equal to, if not more important than, wet deposition of mercury on a regional scale in eastern North America

    Methylated Mercury Species In Municipal Waste Landfill Gas Sampled In Florida, Usa

    No full text
    Mercury-bearing material has been placed in municipal landfills from a wide array of sources including fluorescent lights, batteries, electrical switches, thermometers, and general waste. Despite its known volatility, persistence, and toxicity in the environment, the fate of mercury in landfills has not been widely studied. The nature of landfills designed to reduce waste through generation of methane by anaerobic bacteria suggests the possibility that these systems might also serve as bioreactors for the production of methylated mercury compounds. The toxicity of such species mandates the need to determine if they are emitted in municipal landfill gas (LFG). In a previous study, we had measured levels of total gaseous mercury (TGM) in LFG in the μg/m3 range in two Florida landfills, and elevated levels of monomethyl mercury (MMM) were identified in LFG condensate, suggesting the possible existence of gaseous organic Hg compounds in LFG. In the current study, we measured TGM, Hg0, and methylated mercury compounds directly in LFG from another Florida landfill. Again, TGM was in the μg/m3 range, MMM was found in condensate, and this time we positively identified dimethyl mercury (DMM) in the LGF in the ng/m3 range. These results identify landfills as a possible anthropogenic source of DMM emissions to air, and may help explain the reports of MMM in continental rainfall. Copyright © 2001

    A passive sampler for ambient gaseous oxidized mercury concentrations

    No full text
    This paper reports on the development of a passive sampler for estimating gaseous oxidized mercury concentrations. Atmospheric gaseous oxidized mercury concentrations calculated from passive sampler data were correlated with those obtained using an automated analyzer (r2 = 0.71, p \u3c 0.01, n = 110 for one-week deployments; r2 = 0.89, p \u3c 0.01, n = 22 for two-week deployments). Sampler uptake was not significantly affected by changes in temperature, humidity, or ozone concentration, but it was slightly dependent on wind speed. As such, an equation for correcting data due to this factor was developed based on wind tunnel and field data. The detection limit for a two-week sampler deployment was ∼5 pg m−3. Field data collected in Nevada and the southeastern United States showed these samplers are useful for investigating spatial and temporal variability in gaseous oxidized mercury concentrations

    Estimation of Dry Deposition of Atmospheric Mercury in Nevada by Direct and Indirect Methods

    No full text
    Atmospheric models and limited measurements indicate that dry deposition of atmospheric mercury is an important process by which mercury is input to ecosystems. To begin to fill the measurement data gap, multiple methods were used simultaneously during seasonal campaigns conducted in 2005 and 2006 to estimate dry deposition of atmospheric mercury at two Mercury Deposition Network (MDN) sites in rural Nevada and in Reno, Nevada. Gaseous elemental mercury (Hg0), reactive gaseous mercury (RGM), and particulate-bound mercury (Hgp) concentrations were measured using Tekran 2537A/1130/1135 systems. These speciated measurements were combined with on-site meteorological measurements to estimate depositional fluxes of RGM and Hgp using dry deposition models. Modeled fluxes were compared with more direct measurements obtained using polysulfone cation-exchange membranes and foliar surfaces. Dynamic flux chambers were used to measure soil mercury exchange. RGM concentrations were higher during warmer months at all sites, leading to seasonal variation in the modeled importance of RGM as a component of total depositional load. The ratio of dry to wet deposition was between 10 and 90%, and varied with season and with the methods used for dry deposition approximations. This work illustrates the variability of mercury dry deposition with location and time and highlights the need for direct dry deposition measurements

    Development of a passive sampler for gaseous mercury

    No full text
    Here we describe work toward development of the components of a cost effective passive sampling system for gaseous Hg that could be broadly deployed by nontechnical staff. The passive sampling system included an external shield to reduce turbulence and exposure to precipitation and dust, a diffusive housing that directly protects the collection surface during deployment and handling, and a collection surface. A protocol for cleaning and deploying the sampler and an analytical method were developed. Our final design consisted of a polycarbonate external shield enclosing a custom diffusive housing made from expanded PTFE tubing. Two collection surfaces were investigated, gold sputter-coated quartz plates and silver wires. Research showed the former would require extensive quality control for use, while the latter had interferences with other atmosphere constituents. Although the gold surface exhibited the best performance over space and time, gradual passivation would limit reuse. For both surfaces lack of contamination during shipping, deployment and storage indicated that the handling protocols developed worked well with nontechnical staff. We suggest that the basis for this passive sampling system is sound, but further exploration and development of a reliable collection surface is needed
    • …
    corecore