49 research outputs found

    Dense matter with eXTP

    Full text link
    In this White Paper we present the potential of the Enhanced X-ray Timing and Polarimetry (eXTP) mission for determining the nature of dense matter; neutron star cores host an extreme density regime which cannot be replicated in a terrestrial laboratory. The tightest statistical constraints on the dense matter equation of state will come from pulse profile modelling of accretion-powered pulsars, burst oscillation sources, and rotation-powered pulsars. Additional constraints will derive from spin measurements, burst spectra, and properties of the accretion flows in the vicinity of the neutron star. Under development by an international Consortium led by the Institute of High Energy Physics of the Chinese Academy of Science, the eXTP mission is expected to be launched in the mid 2020s.Comment: Accepted for publication on Sci. China Phys. Mech. Astron. (2019

    Neutrinos, Cosmic Rays and the MeV Band

    Get PDF
    The possible association of the blazar TXS 0506+056 with a high-energy neutrino detected by IceCube holds the tantalizing potential to answer three astrophysical questions: 1. Where do high-energy neutrinos originate? 2. Where are cosmic rays produced and accelerated? 3. What radiation mechanisms produce the high-energy {\gamma}-rays in blazars? The MeV gamma-ray band holds the key to these questions, because it is an excellent proxy for photo-hadronic processes in blazar jets, which also produce neutrino counterparts. Variability in MeV gamma-rays sheds light on the physical conditions and mechanisms that take place in the particle acceleration sites in blazar jets. In addition, hadronic blazar models also predict a high level of polarization fraction in the MeV band, which can unambiguously distinguish the radiation mechanism. Future MeV missions with a large field of view, high sensitivity, and polarization capabilities will play a central role in multi-messenger astronomy, since pointed, high-resolution telescopes will follow neutrino alerts only when triggered by an all-sky instrument.Comment: White paper submitted to the Astro2020 Decadal Surve

    Energetic Particles of Cosmic Accelerators I: Galactic Accelerators

    Get PDF
    The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Our pursuit of more than a century to uncover the origins and fate of these cosmic energetic particles has given rise to some of the most interesting and challenging questions in astrophysics. Energetic particles in our own galaxy, galactic cosmic rays (GCRs), engage in a complex interplay with the interstellar medium and magnetic fields in the galaxy, giving rise to many of its key characteristics. For instance, GCRs act in concert with galactic magnetic fields to support its disk against its own weight. GCR ionization and heating are essential ingredients in promoting and regulating the formation of stars and protostellar disks. GCR ionization also drives astrochemistry, leading to the build up of complex molecules in the interstellar medium. GCR transport throughout the galaxy generates and maintains turbulence in the interstellar medium, alters its multi-phase structure, and amplifies magnetic fields. GCRs could even launch galactic winds that enrich the circumgalactic medium and alter the structure and evolution of galactic disks. As crucial as they are for many of the varied phenomena in our galaxy, there is still much we do not understand about GCRs. While they have been linked to supernova remnants (SNRs), it remains unclear whether these objects can fully account for their entire population, particularly at the lower (approximately less than 1 GeV per nucleon) and higher (~PeV) ends of the spectrum. In fact, it is entirely possible that the SNRs that have been found to accelerate CRs merely re-accelerate them, leaving the origins of the original GCRs a mystery. The conditions for particle acceleration that make SNRs compelling source candidates are also likely to be present in sources such as protostellar jets, superbubbles, and colliding wind binaries (CWBs), but we have yet to ascertain their roles in producing GCRs. For that matter, key details of diffusive shock acceleration (DSA) have yet to be revealed, and it remains to be seen whether DSA can adequately explain particle acceleration in the cosmos. This White Paper is the first of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. For the case of GCRs, MeV astronomy will: 1) Search for fresh acceleration of GCRs in SNRs; 2) Test the DSA process, particularly in SNRs and CWBs; 3) Search for signs of CR acceleration in protostellar jets and superbubbles

    Energetic Particles of Cosmic Accelerators II: Active Galactic Nuclei and Gamma-ray Bursts

    Get PDF
    The high-energy universe has revealed that energetic particles are ubiquitous in the cosmos and play a vital role in the cultivation of cosmic environments on all scales. Though they play a key role in cultivating the cosmological environment and/or enabling our studies of it, there is still much we do not know about AGNs and GRBs, particularly the avenue in which and through which they supply radiation and energetic particles, namely their jets. This White Paper is the second of a two-part series highlighting the most well-known high-energy cosmic accelerators and contributions that MeV gamma-ray astronomy will bring to understanding their energetic particle phenomena. The focus of this white paper is active galactic nuclei and gamma-ray bursts.Comment: 11 pages (including references), 2 figures; Submitted to the Astro2020 call for science white paper

    Prospects for Pulsar Studies at MeV Energies

    Get PDF
    Enabled by the Fermi Large Area Telescope, we now know that pulsars fill the gamma-ray sky, and we are beginning to understand their emission mechanism and their distribution throughout the Galaxy. To address key questions calls for a sensitive, wide-field MeV telescope, which can detect the population of MeV-peaked pulsars hinted at by Fermi

    Relative-locality distant observers and the phenomenology of momentum-space geometry

    Full text link
    We study the translational invariance of the relative-locality framework proposed in arXiv:1101.0931, which had been previously established only for the case of a single interaction. We provide an explicit example of boundary conditions at endpoints of worldlines, which indeed ensures the desired translational invariance for processes involving several interactions, even when some of the interactions are causally connected (particle exchange). We illustrate the properties of the associated relativistic description of distant observers within the example of a Îş\kappa-Poincar\'e-inspired momentum-space geometry, with de Sitter metric and parallel transport governed by a non-metric and torsionful connection. We find that in such a theory simultaneously-emitted massless particles do not reach simultaneously a distant detector, as expected in light of the findings of arXiv:1103.5626 on the implications of non-metric connections. We also show that the theory admits a free-particle limit, where the relative-locality results of arXiv:1102.4637 are reproduced. We establish that the torsion of the Îş\kappa-Poincar\'e connection introduces a small (but observably-large) dependence of the time of detection, for simultaneously-emitted particles, on some properties of the interactions producing the particles at the source.Comment: 45 pages, 10 figure

    Report of the Topical Group on Cosmic Probes of Dark Matter for Snowmass 2021

    Full text link
    Cosmological and astrophysical observations currently provide the only robust, positive evidence for dark matter. Cosmic probes of dark matter, which seek to determine the fundamental properties of dark matter through observations of the cosmos, have emerged as a promising means to reveal the nature of dark matter. This report summarizes the current status and future potential of cosmic probes to inform our understanding of the fundamental nature of dark matter in the coming decade.Comment: Report of the CF3 Topical Group for Snowmass 2021; 35 pages, 10 figures, many references. V3 updates Fig 3-2 and the author lis

    Prompt Emission Polarimetry of Gamma-Ray Bursts

    Get PDF
    Many aspects of astrophysical jets can be studied by measuring the polarization of the prompt emission from GRBs. Theoretical models show that a more complete understanding of the inner structure of GRBs, including the geometry and physical processes close to the central engine, can only be achieved by gamma-ray polarimetry
    corecore