36 research outputs found

    PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment

    Get PDF
    Kaposi’s sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.Fil: Naipauer, Julian. Miami University; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Rosario, Santas. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Gupta, Sachin. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Premer, Courtney. Miami University; Estados UnidosFil: Méndez Solís, Omayra. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Schlesinger, Mariana. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ponzinibbio, Maria Virginia. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Jain, Vaibhav. University of Florida; Estados UnidosFil: Gay, Lauren. University of Florida; Estados UnidosFil: Renne, Rolf. University of Florida; Estados UnidosFil: Chan, Ho Lam. Miami University; Estados UnidosFil: Morey, Lluis. Miami University; Estados UnidosFil: Salyakina, Daria. Miami University; Estados Unidos. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados UnidosFil: Abba, Martín Carlos. Miami University; Estados Unidos. Universidad Nacional de La Plata. Facultad de Ciencias Médicas. Centro de Investigaciones Inmunológicas Básicas y Aplicadas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Williams, Sion. Miami University; Estados UnidosFil: Hare, Joshua M.. Miami University; Estados UnidosFil: Goldschmidt Clermont, Pascal. Miami University; Estados UnidosFil: Mesri, Enrique Alfredo. Sylvester Comprehensive Cancer Center and Miami Center for AIDS Research; Estados Unidos. Miami University; Estados Unido

    PDGFRA defines the mesenchymal stem cell Kaposi's sarcoma progenitors by enabling KSHV oncogenesis in an angiogenic environment

    Get PDF
    Kaposi’s sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.Centro de Investigaciones Inmunológicas Básicas y Aplicada

    Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    Get PDF
    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors

    Route of Delivery Modulates the Efficacy of Mesenchymal Stem Cell Therapy for Myocardial Infarction

    No full text
    Accumulating data support a therapeutic role for mesenchymal stem cell (MSC) therapy; however, there is no consensus on the optimal route of delivery. We tested the hypothesis that the route of MSC delivery influences the reduction in infarct size and improvement in left ventricular ejection fraction (LVEF). We performed a meta-analysis investigating the effect of MSC therapy in acute myocardial infarction (AMI) and chronic ischemic cardiomyopathy preclinical studies (58 studies; n=1165 mouse, rat, swine) which revealed a reduction in infarct size and improvement of LVEF in all animal models. Route of delivery was analyzed in AMI swine studies and clinical trials (6 clinical trials; n=334 patients). In AMI swine studies, transendocardial stem cell injection reduced infarct size (n=49, 9.4% reduction; 95% confidence interval, -15.9 to -3.0), whereas direct intramyocardial injection, intravenous infusion, and intracoronary infusion indicated no improvement. Similarly, transendocardial stem cell injection improved LVEF (n=65, 9.1% increase; 95% confidence interval, 3.7 to 14.5), as did direct intramyocardial injection and intravenous infusion, whereas intracoronary infusion demonstrated no improvement. In humans, changes of LVEF paralleled these results, with transendocardial stem cell injection improving LVEF (n=46, 7.0% increase; 95% confidence interval, 2.7 to 11.3), as did intravenous infusion, but again intracoronary infusion demonstrating no improvement. MSC therapy improves cardiac function in animal models of both AMI and chronic ischemic cardiomyopathy. The route of delivery seems to play a role in modulating the efficacy of MSC therapy in AMI swine studies and clinical trials, suggesting the superiority of transendocardial stem cell injection because of its reduction in infarct size and improvement of LVEF, which has important implications for the design of future studies
    corecore