232 research outputs found

    Self-Deception as Affective Coping. An Empirical Perspective on Philosophical Issues

    Get PDF
    In the philosophical literature, self-deception is mainly approached through the analysis of paradoxes. Yet, it is agreed that self-deception is motivated by protection from distress. In this paper, we argue, with the help of findings from cognitive neuroscience and psychology, that self-deception is a type of affective coping. First, we criticize the main solutions to the paradoxes of self-deception. We then present a new approach to self-deception. Self-deception, we argue, involves three appraisals of the distressing evidence: (a) appraisal of the strength of evidence as uncertain, (b) low coping potential and (c) negative anticipation along the lines of Damasio’s somatic marker hypothesis. At the same time, desire impacts the treatment of flattering evidence via dopamine. Our main proposal is that self-deception involves emotional mechanisms provoking a preference for immediate reward despite possible long-term negative repercussions. In the last part, we use this emotional model to revisit the philosophical paradoxes

    A note on 5-cycle double covers

    Full text link
    The strong cycle double cover conjecture states that for every circuit CC of a bridgeless cubic graph GG, there is a cycle double cover of GG which contains CC. We conjecture that there is even a 5-cycle double cover SS of GG which contains CC, i.e. CC is a subgraph of one of the five 2-regular subgraphs of SS. We prove a necessary and sufficient condition for a 2-regular subgraph to be contained in a 5-cycle double cover of GG

    Normal edge-colorings of cubic graphs

    Get PDF
    A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors having the additional property that when looking at the set of colors assigned to any edge ee and the four edges adjacent it, we have either exactly five distinct colors or exactly three distinct colors. We denote by χN(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal kk-edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. More precisely, it is known that proving χN(G)5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture and then, among others, Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the larger class of all simple cubic graphs (not necessarily bridgeless), some interesting questions naturally arise. For instance, there exist simple cubic graphs, not bridgeless, with χN(G)=7\chi'_{N}(G)=7. On the other hand, the known best general upper bound for χN(G)\chi'_{N}(G) was 99. Here, we improve it by proving that χN(G)7\chi'_{N}(G)\leq7 for any simple cubic graph GG, which is best possible. We obtain this result by proving the existence of specific no-where zero Z22\mathbb{Z}_2^2-flows in 44-edge-connected graphs.Comment: 17 pages, 6 figure

    Snarks with total chromatic number 5

    Get PDF
    A k-total-coloring of G is an assignment of k colors to the edges and vertices of G, so that adjacent and incident elements have different colors. The total chromatic number of G, denoted by chi(T)(G), is the least k for which G has a k-total-coloring. It was proved by Rosenfeld that the total chromatic number of a cubic graph is either 4 or 5. Cubic graphs with chi(T) = 4 are said to be Type 1, and cubic graphs with chi(T) = 5 are said to be Type 2. Snarks are cyclically 4-edge-connected cubic graphs that do not allow a 3-edge-coloring. In 2003, Cavicchioli et al. asked for a Type 2 snark with girth at least 5. As neither Type 2 cubic graphs with girth at least 5 nor Type 2 snarks are known, this is taking two steps at once, and the two requirements of being a snark and having girth at least 5 should better be treated independently. In this paper we will show that the property of being a snark can be combined with being Type 2. We will give a construction that gives Type 2 snarks for each even vertex number n >= 40. We will also give the result of a computer search showing that among all Type 2 cubic graphs on up to 32 vertices, all but three contain an induced chordless cycle of length 4. These three exceptions contain triangles. The question of the existence of a Type 2 cubic graph with girth at least 5 remains open

    Minimum-Density Identifying Codes in Square Grids

    Get PDF
    International audienceAn identifying code in a graph G is a subset of vertices with the property that for each vertex v ∈ V (G), the collection of elements of C at distance at most 1 from v is non-empty and distinct from the collection of any other vertex. We consider the minimum density d * (S k) of an identifying code in the square grid S k of height k (i.e. with vertex set Z × {1,. .. , k}). Using the Discharging Method, we prove 7 20 + 1 20k ≤ d * (S k) ≤ min 2 5 , 7 20 + 3 10k , and d * (S3) = 7 18

    Birational Mappings and Matrix Sub-algebra from the Chiral Potts Model

    Full text link
    We study birational transformations of the projective space originating from lattice statistical mechanics, specifically from various chiral Potts models. Associating these models to \emph{stable patterns} and \emph{signed-patterns}, we give general results which allow us to find \emph{all} chiral qq-state spin-edge Potts models when the number of states qq is a prime or the square of a prime, as well as several qq-dependent family of models. We also prove the absence of monocolor stable signed-pattern with more than four states. This demonstrates a conjecture about cyclic Hadamard matrices in a particular case. The birational transformations associated to these lattice spin-edge models show complexity reduction. In particular we recover a one-parameter family of integrable transformations, for which we give a matrix representationComment: 22 pages 0 figure The paper has been reorganized, splitting the results into two sections : results pertaining to Physics and results pertaining to Mathematic
    corecore