278 research outputs found
A note on 5-cycle double covers
The strong cycle double cover conjecture states that for every circuit of
a bridgeless cubic graph , there is a cycle double cover of which
contains . We conjecture that there is even a 5-cycle double cover of
which contains , i.e. is a subgraph of one of the five 2-regular
subgraphs of . We prove a necessary and sufficient condition for a 2-regular
subgraph to be contained in a 5-cycle double cover of
Snarks with total chromatic number 5
A k-total-coloring of G is an assignment of k colors to the edges and vertices of G, so that adjacent and incident elements have different colors. The total chromatic number of G, denoted by chi(T)(G), is the least k for which G has a k-total-coloring. It was proved by Rosenfeld that the total chromatic number of a cubic graph is either 4 or 5. Cubic graphs with chi(T) = 4 are said to be Type 1, and cubic graphs with chi(T) = 5 are said to be Type 2.
Snarks are cyclically 4-edge-connected cubic graphs that do not allow a 3-edge-coloring. In 2003, Cavicchioli et al. asked for a Type 2 snark with girth at least 5. As neither Type 2 cubic graphs with girth at least 5 nor Type 2 snarks are known, this is taking two steps at once, and the two requirements of being a snark and having girth at least 5 should better be treated independently.
In this paper we will show that the property of being a snark can be combined with being Type 2. We will give a construction that gives Type 2 snarks for each even vertex number n >= 40.
We will also give the result of a computer search showing that among all Type 2 cubic graphs on up to 32 vertices, all but three contain an induced chordless cycle of length 4. These three exceptions contain triangles. The question of the existence of a Type 2 cubic graph with girth at least 5 remains open
Normal edge-colorings of cubic graphs
A normal -edge-coloring of a cubic graph is an edge-coloring with
colors having the additional property that when looking at the set of colors
assigned to any edge and the four edges adjacent it, we have either exactly
five distinct colors or exactly three distinct colors. We denote by
the smallest , for which admits a normal
-edge-coloring. Normal -edge-colorings were introduced by Jaeger in order
to study his well-known Petersen Coloring Conjecture. More precisely, it is
known that proving for every bridgeless cubic graph is
equivalent to proving Petersen Coloring Conjecture and then, among others,
Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Considering the
larger class of all simple cubic graphs (not necessarily bridgeless), some
interesting questions naturally arise. For instance, there exist simple cubic
graphs, not bridgeless, with . On the other hand, the known
best general upper bound for was . Here, we improve it by
proving that for any simple cubic graph , which is best
possible. We obtain this result by proving the existence of specific no-where
zero -flows in -edge-connected graphs.Comment: 17 pages, 6 figure
Minimum-Density Identifying Codes in Square Grids
International audienceAn identifying code in a graph G is a subset of vertices with the property that for each vertex v ∈ V (G), the collection of elements of C at distance at most 1 from v is non-empty and distinct from the collection of any other vertex. We consider the minimum density d * (S k) of an identifying code in the square grid S k of height k (i.e. with vertex set Z × {1,. .. , k}). Using the Discharging Method, we prove 7 20 + 1 20k ≤ d * (S k) ≤ min 2 5 , 7 20 + 3 10k , and d * (S3) = 7 18
Birational Mappings and Matrix Sub-algebra from the Chiral Potts Model
We study birational transformations of the projective space originating from
lattice statistical mechanics, specifically from various chiral Potts models.
Associating these models to \emph{stable patterns} and \emph{signed-patterns},
we give general results which allow us to find \emph{all} chiral -state
spin-edge Potts models when the number of states is a prime or the square
of a prime, as well as several -dependent family of models. We also prove
the absence of monocolor stable signed-pattern with more than four states. This
demonstrates a conjecture about cyclic Hadamard matrices in a particular case.
The birational transformations associated to these lattice spin-edge models
show complexity reduction. In particular we recover a one-parameter family of
integrable transformations, for which we give a matrix representationComment: 22 pages 0 figure The paper has been reorganized, splitting the
results into two sections : results pertaining to Physics and results
pertaining to Mathematic
Embodied memory: unconscious smiling modulates emotional evaluation of episodic memories.
Since Damasio introduced the somatic markers hypothesis in Damasio (1994), it has spread through the psychological community, where it is now commonly acknowledged that somatic states are a factor in producing the qualitative dimension of our experiences. Present actions are emotionally guided by those somatic states that were previously activated in similar experiences. In this model, somatic markers serve as a kind of embodied memory. Here, we test whether the manipulation of somatic markers can modulate the emotional evaluation of negative memories. Because facial feedback has been shown to be a powerful means of modifying emotional judgements, we used it to manipulate somatic markers. Participants first read a sad story in order to induce a negative emotional memory and then were asked to rate their emotions and memory about the text. Twenty-four hours later, the same participants were asked to assume a predetermined facial feedback (smiling) while reactivating their memory of the sad story. The participants were once again asked to fill in emotional and memory questionnaires about the text. Our results showed that participants who had smiled during memory reactivation later rated the text less negatively than control participants. However, the contraction of the zygomaticus muscles during memory reactivation did not have any impact on episodic memory scores. This suggests that manipulating somatic states modified emotional memory without affecting episodic memory. Thus, modulating memories through bodily states might pave the way to studying memory as an embodied function and help shape new kinds of psychotherapeutic interventions
- …
