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Abstract. An identifying code in a graph G is a subset of vertices with
the property that for each vertex v ∈ V (G), the collection of elements
of C at distance at most 1 from v is non-empty and distinct from the
collection of any other vertex. We consider the minimum density d∗(Sk)
of an identifying code in the square grid Sk of height k (i.e. with vertex

set Z×{1, . . . , k}). Using the Discharging Method, we prove
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1 Introduction

The two-way infinite path, denoted PZ, is the graph with vertex set Z and edge
set {{i, i + 1} : i ∈ Z}. For every positive integer k, the finite path of length
k − 1, denoted Pk, is the subgraph of PZ induced by {1, 2, . . . , k}.

The cartesian product of two graphs G and H, denoted by G�H, is the
graph with vertex set V (G)×V (H) and edge set {(a, x)(b, y) | either (a = b and
xy ∈ E(H)) or (ab ∈ E(G) and x = y) }. A square grid is the cartesian product
of two paths, which can be finite or infinite. The square lattice is the cartesian
product PZ�PZ of two two-way infinite paths and is denoted by G. For every
positive integer k, we denote by Sk the square grid PZ�Pk

Let G be a graph. The closed neighbourhood of v, denoted N [v], is the set of
vertices that are either v or adjacent to v in G. A set C ⊆ V (G) is an identifying
code in G if for every vertex v ∈ V (G), N [v] ∩ C 6= ∅, and for any two distinct
vertices u, v ∈ V (G), N [u] ∩ C 6= N [v] ∩ C.

Let G be a (finite or infinite) graph. For any non-negative integer r and
vertex v, we denote by Br(v) the ball of radius r in G, that is Br(v) = {x |
dist(v, x) ≤ r}. For any set of vertices C ⊆ V (G), the density of C in G, denoted
by d(C,G), is defined by

d(C,G) = lim sup
r→+∞

|C ∩Br(v0)|
|Br(v0)|

,



where v0 is an arbitrary vertex in G. The infimum of the density of an identi-
fying code in G is denoted by d∗(G). Observe that if G is finite, then d∗(G) =
|C∗|/|V (G)|, where C∗ is a minimum-size identifying code in G.

The problem of finding identifying codes of small density was introduced in
[10] in relation to fault diagnosis in arrays of processors. Identifying codes are
also used in [11] to model a location detection problem with sensor networks.
Identifying codes of the grids have been studied [2], [5], [9], [10] as well as varia-
tions where instead of considering the closed neighbourhood to identify a vertex,
the the ball of radius r (for some fixed r) is considered [2], [8]. The closely re-
lated problem of finding a locating-dominating set with minimum density has
also been studied [12].

In this paper, we are interested in identifying codes of square grids, and more
specifically the Sk. The tile depicted in Figure 1 was given in [3]. It generates a

Fig. 1. Tile generating an optimal identifying code of the grid.

periodic tiling of the plane with periods (0, 10) and (4, 1), yielding an identifying
code C∗G of the square lattice with density 7

20 . Ben-Haim and Litsyn [1] proved
that this density is optimal, that is d∗(G) = 7

20 .
Daniel, Gravier, and Moncel [6] showed that d∗(S1) = 1

2 and d∗(S2) = 3
7 . For

larger value of k, they proved the following lower and upper bound on d∗(Sk):
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The upper bound is obtain by deriving an identifying code of Sk with density
7
20 + 3

10k from the optimal identifying code C∗G of the square lattice.
The lower bound is obtained using the Discharging Method and proceeds in

two phases. The first one is a rewriting of the proof of Ben-Haim and Litsyn [1]
as a Discharging Method proof. Doing so, it becomes clear that it extends to
any square grid, and so that d∗(G) ≥ 7

20 for any square grid. It makes it also
possible to improve on this bound when G = Sk with k ≥ 3 in a second phase.



We strongly believe that both our upper and lower bounds may be improved
using the same general techniques. In fact, to obtain the upper bound, we only
alter the code C∗G on the top two rows and the bottom two rows of Sk. Looking
for alterations on more rows, possibly with the help of a computer, will cer-
tainly yield codes with smaller density. We made no attempt to optimize the
second phase in the lower bound proof. Doing more complicated discharging
rules, based on more complicated properties of identifying codes will surely give
better bounds. However, we do not see any way to make the two bounds meet
for all k. Nevertheless, we are able to do it for k = 3 : we show that d∗(S3) = 7

18 .

2 General upper bounds

Theorem 1. For all k ≥ 7, we have d∗(Sk) ≤ 7

20
+

3

10k
.

Proof. Let Kk be the code of Sk obtained from C∗G on Sk by replacing the rows
Z× {1} and Z× {2} by the rows depicted in Figure 2 and the rows Z× {k− 1}
and Z× {k} by the ones obtained symmetrically.

Fig. 2. The bottom rows (white disks) of Kk.

We claim the code Kk is identifying. Indeed since C∗G is an identifying code
of the square lattice, it suffices to check that for every vertex v ∈ Z×{1, 2, 3, k−
2, k− 1, k}, there is no vertex w such that N [v]∩Kk = N [w]∩Kk. This can be
easily done.

The density of Kk on Z × {1, 2, k, k − 1} is 34
80 . So, the density of Kk is

7
20 (1− 4

k ) + 34
80 ×

4
k = 7

20 + 3
10k .

3 Lower bounds on d∗(Sk)

The aim of this section is to show that d∗(Sk) ≥ 7
20 + 1

20k .
The general idea is to consider an identifying code C in a square grid G.

We assign an initial weight w(v) to each vertex where w(v) = 1 if v ∈ C and
w(v) = 0 otherwise. We then apply some local discharging rules. In such rules,
some vertices send part of their weight to some other vertices at distance at most
s, for some fixed integer s. We then prove that the final weight w∗(v) of every
vertex v is at least d∗. We claim that it implies d(C,G) ≥ d∗. This is trivial
if G is bounded. Suppose now that G = Sk. Since a vertex sends at most 1 to



vertices at distance at most s, a charge of at most |Br+s(v0) \ Br(v0)| ≤ 2sk
enters Br(v0) during the discharging phase. Thus

|C∩Br(v0)| =
∑

v∈Br(v0)

w(v) ≥
∑

v∈Br(v0)

w∗(v)−|Br+s(v0)\Br(v0)| ≥ d∗·|Br(v0)|−2sk .

But |Br(v0)| ≥ (2r+1)k−k2, thus d(C,Sk) ≥ lim sup
r→+∞

(
d∗ − 2sk

(2r + 1)k − k2

)
=

d∗. This proves our claim. We then deduce d∗(Sk) ≥ d∗.
Let C be an identifying code in a square grid G. We denote by U the set of

vertices not in C. For 1 ≤ i ≤ 5, we define Li = {v ∈ G | |N [v]∩C| = i}, and we
set Ci = Li ∩ C and Ui = Li ∩ U . Observe that U5 is empty. For X ∈ {C,L,U}
we set X≥i =

⋃5
j=iXj and X≤i =

⋃i
j=1Xj .

For every set S ⊆ V (G), a vertex in S is called an S-vertex.
The following proposition is a direct consequence of the definition of identi-

fying code.

Proposition 1. Let C be an identifying code in a square grid G.

(i) Every vertex in C has at most one neighbour in U1.
(ii) Every vertex in C1 has no neighbour in U1.

(iii) Two vertices in C2 are not adjacent.

Let C ′ be the set of vertices in C1 that have four neighbours in G that belong
all to U≤2. Let L̃3 be the set of vertices in C3 having at least one neighbour in

C≥3. Set L3 = L3 \ L̃3 and C3 = C3 \ L̃3

Proposition 2 (Ben-Haim and Litsyn [1]). Let C be an identifying code in
a square grid G. There is a bipartite graph H with bipartition (C ′, L≥3) such
that

(i) the degree of every element of C ′ is at least 4,
(ii) the degree of every element of L3 is at most 2,

(iii) the degree of every element of L̃3 is at most 6, and
(iii) the degree of every element of L≥4 is at most 4.

Proof. Ben-Haim and Litsyn [1] proved Proposition 2 for another definition of
the set L̃3 : their set is larger than ours. However it happens that using word for
word the same rules as Ben-Haim and Litsyn (Steps 1 to 10 in [1]) for building
the bipartite graph from an identifying code of the square lattice, regardless
to the fact that L̃3 is not the same set, we get a bipartite graph that may be
different but has exactly the same degree properties ; the proof of this fact is
exactly the same as the one of [1].

Furthermore, in the construction of Ben-Haim and Litsyn, the neighbours in
H of an element c′ of C ′ are always in the rectangle with corners c′ and another
vertex c ∈ C. Therefore it is in any square grid containing those two vertices, and
so their proof works for any square grid. However, it might be possible that this
vertex is not in G if this graph is not a square grid and the proof of Proposition 2
does not work for any induced subgraph G of G.



Remark 1. The graph H in Proposition 2 may have some double edges.

Theorem 2. Let G be a square grid. Then d∗(G) ≥ 7
20 .

Proof. Let C be an indentifying code in G and H be a bipartite graph associated
to C as described in Proposition 2. We give an initial weight 1 to the vertices of
C and 0 to the vertices in U . We then apply the following discharging rules, one
after another. So if several rules must be applied to a same vertex, then it will
send charge several times.

(R1) Every vertex of C sends 7
20 to each neighbour in U1 and 7

40 to each neighbour
in U≥2.

(R2) Every vertex of L≥3 sends 1
20 to its neighbours in C≤2.

(R3) Every vertex of L≥3 sends 1
80 to each C ′-vertex to which it is adjacent in H

by one edge and 2
80 to each C ′-vertex to which it is adjacent in H by two

edges.

Let us prove that the final weight w′(v) of each vertex v is at least 7/20.
If v ∈ C ′, then its original weight is 1. By Proposition 1-(ii), it has no U1

neighbour. Hence it sends 7
40 to each of its four neighbours in U by (R1), and

receives 1
80 from each of its at least four edges in H by (R3). Hence w′(v) ≥

1− 4 · 7
40 + 4 · 1

80 = 7
20 .

If v ∈ C1 \C ′, then its original weight is 1. By Proposition 1-(ii), it has no U1

neighbour. By definition of C ′, it has a neighbour in L≥3 from which it receives
1
20 by (R2). Hence w′(v) ≥ 1− 4 · 7

40 + 1
20 = 7

20 .
If v ∈ U1 ∪ U2, then its original weight is 0. It receives 7

20 by (R1), and it
does not send anything. Hence w′(v) = 7

20 .
If v ∈ C2, then its original weight is 1. By Proposition 1-(i), it has at most one

U1 neighbour, so its sends at most 7
20 +2· 740 by (R1). Moreover, by Proposition 1-

(iii), it has a neighbour in C≥3 from which it receives 1
20 by (R2). Hence w′(v) ≥

1− 7
20 − 2 · 7

40 + 1
20 = 7

20 .

If v ∈ L̃3, then it is in C3, so its original weight is 1. By Proposition 1-(i), it
has at most one U1 neighbour, so it sends at most 7

20 + 7
40 by (R1). By definition

of L̃3, v has at most one neighbour in C≤2, so its sends at most 1
20 by (R2).

Finally, it has degree at most 6 in H, so it sends at most 6 · 1
80 by (R3). Hence

w′(v) ≥ 1− 7
20 −

7
40 −

1
20 − 6 · 1

80 = 7
20 .

If v ∈ C3, then it is in C3, so its original weight is 1. By Proposition 1-
(i), it has at most one U1 neighbour, so it sends at most 7

20 + 7
40 by (R1).

It has at most two neighbours in C≤2, so its sends at most 2 · 1
20 by (R2).

And it has degree at most 2 in H, so it sends at most 2 · 1
80 by (R3). Hence

w′(v) ≥ 1− 7
20 −

7
40 − 2. 120 − 2 · 1

80 = 7
20 .

If v ∈ U3, then its original weight is 0. It receives 3 · 7
40 by (R1). It has

at most three neighbours in C≤2, so its sends at most 3 · 1
20 by (R2). And it

has degree at most 2 in H, so it sends at most 2 · 1
80 by (R3). Hence w′(v) ≥

3 · 7
40 − 3. 120 − 2 · 1

80 = 7
20 .

If v ∈ C4, then its original weight is 1. It send at most 7
20 to its unique

U -neighbour by (R1). It has at most three neighbours in C≤2, so its sends at



most 3 · 1
20 by (R2). And it has degree at most 4 in H, so it sends at most 4 · 1

80
by (R3). Hence w′(v) ≥ 1− 7

20 − 3. 120 − 4 · 1
80 = 9

20 .
If v ∈ U4, then its original weight is 0. It receives 4 · 7

40 by (R1). It has
at most four neighbours in C≤2, so its sends at most 4 · 1

20 by (R2). And it
has degree at most 4 in H, so it sends at most 4 · 1

80 by (R3). Hence w′(v) ≥
4 · 7

40 − 4. 120 − 4 · 1
80 = 9

20 .
If v ∈ C5, then its original weight is 1. It has no U -neighbour. It has at most

four neighbours in C≤2, so its sends at most 4 · 1
20 by (R2). And it has degree at

most 4 in H, so it sends at most 4· 180 by (R3). Hence w′(v) ≥ 1−4. 120−4· 180 = 15
20 .

Thus at the end, w′(v) ≥ 7
20 for all vertex v, so d(C,G) ≥ 7

20 .

Theorem 2 is tight because d∗(G) = 7
20 . However, for Sk, we can improve on

7/20.

Theorem 3. For any k ≥ 3, d∗(Sk) = 7
20 + 1

20k .

Proof. Let us first give some definition. In Sk, the row of index i, denoted Ri,
is the set of vertices Z × {i}, the column of index j, denoted Qj , is the set of
vertices {j} × {1, . . . , k}. The border vertices are those of R1 ∪Rk.

Let C be an identifying code in Sk.
We first apply the discharging phase as in the proof of Theorem 2. At the

end of this phase every vertex has weight at least 7/20. But some of them may
have a larger weight.

It is for example the case of C4-vertices which have weight at least 9/20.
Let D3 be the set of vertices of C3 having no neighbour in C≤2. Observe that

D3 ⊆ L̃3. A vertex of D3 do not send anything by (R2), hence its weight is at
least 8

20 . Set D = D3 ∪ C4.
Consider also border C-vertices. Such vertices are missing one neighbour,

so for any 1 ≤ i ≤ 4, border Ci-vertices gives to one U -neighbour less than
non-border Ci-vertices by (R1). It follows that if v is a border C-vertex, then
w(v) ≥ 7

20 + 7
40 .

The following claim shows that there are many vertices in R1 ∪ R2 with a
weight larger than 7/20.

Claim. Let C be a code of Sk. If {(a − 3, 1), (a − 2, 1), (a − 1, 1), (a, 1), (a +
1, 1), (a+ 2, 1), (a+ 3, 1)} ∩ C = ∅, then (a, 2) is in D.

Proof. If {(a−3, 1), (a−2, 1), (a−1, 1), (a, 1), (a+1, 1), (a+2, 1), (a+3, 1)}∩C = ∅,
then necessarily (a − 2, 2), (a − 1, 2), (a, 2), (a + 1, 2), and (a + 2, 2) are in C,
because each vertex has a neighbour in C. Therefore (a−1, 2), (a, 2), and (a+1, 2)
are in C≥3 and so (a, 2) is in D.

We then proceed to a second discharging phase. Set Sj = Qj−3 ∪ Qj−2 ∪
Qj−1 ∪Qj ∪Qj+1 ∪Qj+2 ∪Qj+3.

(R4) Every vertex in D gives 1
20k to every vertex in its column.

(R5) Every border C-vertex in column Qj gives 1
40k to every vertex in Sj .



Let us examine the weight w∗(v) of a vertex v after this phase.
Observe first that every vertex receives at least 1

20k during this second phase.
Indeed, if v = (a, b) has a D-vertex in its column, then it receives 1

20k from
it by (R4). If it has no D-vertex in its column, then by Claim 3, a vertex in
{(a− 3, 1), (a− 2, 1), (a− 1, 1), (a, 1), (a+ 1, 1), (a+ 2, 1), (a+ 3, 1)} is a border
C-vertex, and symmetrically, a vertex in {(a3, k), (a−2, k), (a−1, k), (a, k), (a+
1, k), (a+ 2, k), (a+ 3, k)} is a border C-vertex. And these two vertices send 1

40k
each to v by (R5), so v receives at least 1

20k in total.
If v ∈ D, then w′(v) ≥ 8

20 . By (R4), it sends 1
20k to the k vertices of its

column. Hence it sends 1
20 . Since it received at least 1

20k , w∗(v) ≥ 7
20 + 1

20k .
If v is a border C-vertex, then w′(v) ≥ 7

20 + 7
40 . By (R4), it sends 1

40k to the 7k
vertices of Sj . Hence it sends 7

40 . It also receives at least 1
20k . So w∗(v) ≥ 7

20 + 1
20k .

If v is neither a border C-vertex, nor a D-vertex, then it does not send
anything. So w∗(v) ≥ w′(v) + 1

20k ≥
7
20 + 1

20k .
To conclude, after the second phase, each vertex has weight at least 7

20 + 1
20k .

Thus d(C,Sk) ≥ 7
20 + 1

20k .

4 Optimal identifying code in S3.

Theorem 4. d∗(S3) = 7
18 .

It is straightforward to check that repeating the tile of Figure 3 with period
(12, 0), we obtain an identifying code of density 7

18 .

Fig. 3. Tile of a minimum-density identifying code in S3.

It remains to show that every identifying code in S3 has density at least 7
18 .

We again use the Discharging Method: the technical details are more complicated
than in the previous section, but the general framework is the same.

4.1 Properties of codes in S3

The lower row, (resp. central row, upper row) of S3, is the set of vertices in
Z × {1}, (resp. Z × {2}, Z × {3}). A border vertex is a vertex on the upper or
lower row. A central vertex is a vertex on the central row. The column of index
a is the set {(a, 1), (a, 2), (a, 3)}.

For convenience, instead of using the set Ci we use the set Bi, which is defined
as follows. A vertex is in Bi if it is in C and adjacent to i vertices in U . Hence,
a border vertex in Bi is in C4−i and a central vertex in Bi is in C5−i.

Similarly to Proposition 1, we get the following proposition.



Proposition 3. Let C be an identifying code in S3. Every border B3-vertex has
no neighbour in U1.

Proposition 4. Let C be an identifying code in S3. Every vertex in B4 has a
neighbour in U≥3.

Proof. Let x be a vertex in B4. Necessarily x must be a central vertex, that is,
x = (a, 2) for some a. Assume for a contradiction that x has no neighbour in
U≥3. Then by Proposition 1, its four neighbours are in U2. Consider u = (a, 3):
one of its neighbours y is in C. By symmetry, we may assume y = (a−1, 3). Now
the two vertices u and v = (a− 1, 2) are both adjacent to x and y. Hence, since
u and v are in U2, we obtain N [u] ∩ C = {x, y} = N [v] ∩ C, a contradiction.

Proposition 5. Let C be an identifying code in S3. Every border C-vertex ad-
jacent to a central B3 is in B0 ∪B1.

Proof. Assume for a contradiction that a border B2-vertex y is adjacent to a
central B3-vertex x. Then N [x] ∩ C = N [y] ∩ C = {x, y}, a contradiction.

4.2 Establishing the lower bound

We use the Discharging Method. Let C be an indentifying code in S3. We give
an initial weight 1 to the vertices of C and 0 to the vertices in U . We will then
apply some discharging rules. Our aim is to prove that at the end the final weight
of each vertex will be at least 7

18 .
For sake of clarity and to simplify the proof, we will perform these discharging

rules in two stages.
A generous vertex is either a B0-vertex or a border vertex in B1 having its

central neighbour in C. We first apply the following rules.

(R0) For 1 ≤ i ≤ 4, every vertex of C gives 7
18×i to each of its neighbours in Ui.

(R1) Every generous vertex gives 3
18 to its central neighbour(s).

Let us denote by w1(v) the weight of the vertex v after applying (R0–R1).
Observe that after (R0–R1) all the vertices of U have weight exactly 7

18 .
Indeed for all 1 ≤ i ≤ 4, every vertex u in Ui receives 7

18×i from each of its i

neighbours. Hence in total it receives 7
18 and so w1(u) = 7

18 .
The weight of the vertices of U will not change anymore and the charge will

now only move from C-vertices to other C-vertices.
We define the excess of a vertex v of C as ε(v) = w1(v)− 7

18 . Informally, if it
is positive, the excess of v measures how much weight v has above 7

18 and thus
can give to other vertices. If it is negative, the excess of v measures the quantity
of weight v must receives from others to get weight 7

18 .
Observe that B0-, B1-, B2- and border B3-vertices have positive excess:

– If v ∈ B0, then it gives nothing to U -vertices, and it gives 3
18 to each (at

most two) central neighbours. Thus ε(v) ≥ 1− 7
18 −

6
18 = 5

18 .



– If v ∈ B1, then it gives at most 7
18 to its U -neighbour. So if it is not generous,

ε(v) ≥ 1− 7
18 −

7
18 = 2

9 and if v is generous, ε(v) ≥ 1− 7
18 −

7
18 −

3
18 = 1

18 .
– If v ∈ B2, then it is adjacent to at most one U1-vertex by Proposition 1.

Hence ε(v) ≥ 1− 7
18 −

7
18 −

7
36 = 1

36 .
– If v is a border B3-vertex, then by Proposition 3, it is adajcent to no U1-

vertex. Hence it gives at most 7
36 to each of its U -neighbours. So ε(v) ≥

1− 7
18 − 3× 7

36 = 1
36 .

On the opposite, some vertices of B3∪B4 may have negative excess. Such vertices
of B3 ∪ B4 will be called defective. Observe that defective vertices are on the
central line. Moreover it is easy to check that a defective vertex has no generous
neighbour. Indeed if a defective vertex x has a generous neighbour y, then it is
in B3. Since x has at most one U1-neighbour, it sends at most 7

18 + 2× 7
36 = 14

18
to its U -neighbours. But it also receives 3

18 from its generous neighbour. Hence
ε(x) ≥ 1− 7

18 −
14
18 + 3

18 = 0.
Simple calculations and Propositions 1, 3 and 4 show that a defective vertex

is of one of the following kinds:

– a B4-vertex with at least two U2-neighbours;
– a central B3-vertex with one U1-neighbour and no generous neighbour.

We will now apply some new discharging rules in order to give charge to the
defective vertices so that the final excess ε∗(v) of every vertex v is non-negative.
The rules are applied one after another, so if several rules must be applied to a
same vertex then it will send charge several times.

For S ∈ {C,U}, an S-column is a column all vertices of which are in S. A
right barrier (resp. left barrier) is a C-column such that the right (resp. left)
neighbours of its two border vertices are in U1. A lonely barrier is a barrier such
that the columns to its right and its left are U -columns. Let x be a C-vertex. Its
right pal (resp. left pal) is the closest central C-vertex to its right (resp. left). A
pal is good if it is defective or in a lonely barrier.

(R2) Every border C-vertex x whose central neighbour is not in C sends ε(x)/2
to each of its good pals, if it has two of them and ε(x) to its good pal, if it
has exactly one.

(R3) Every border vertex x in a right (resp. left) barrier sends ε(x) to its right
(resp. left) pal. Every central vertex x of a right (resp. left) barrier sends to
its right (resp. left) pal ε(x) if it is in B2 and 1

18 if it is in B1.
(R4) Every generous B1-vertex not in a barrier sends 1

36 to each of its pals.
(R5) Every central B1-vertex whose left (resp. right) neighbour is not in C sends

3
18 to its right (resp. left) neighbour.

(R6) Every border B2-vertex whose central neighbour is in B2 and adjacent to a
central B3 sends 1

36 to this later vertex.
(R7) Every centralB2-vertex with a border C-neighbour and a central C-neighbour

sends 1
36 to its central C-neighbour.

(R8) Every central B0-vertex or central B1-vertex with its two central neighbours
in C sends 1

18 to each of its central neighbours.



(R9) Every central vertex in a right (resp. left) barrier resend to its right (resp.
left) pal all the charge its receives from border vertices to its left (rep. right)
by (R2).

(R10) A central B2-vertex with a B3-neighbour to its right (resp. left) and a B2-
neighbour to its left (resp. right) sends 1

36 and everything it gets from the
left (resp. right) to its right (resp. left) neighbour.

It is routine to check that every non-defective vertex sends at most its excess
and that its final excess is non-negative. We now consider defective vertices.
Let v = (a, 2) be a defective vertex. Let us show that its final excess ε∗(v) is
non-negative.

We first consider the case when v is in B4.

– Assume first that v has three U2-neighbours and one neighbour in U3 ∪ U4.
Then its original excess ε(v) is at least 1− 7

18 − 3× 7
36 −

7
54 = − 11

108 .
By symmetry, we may assume that (a, 3) ∈ U2, (a−1, 3) ∈ C and (a+1, 3) ∈
U . Hence (a − 1, 2) is in U3 ∪ U4 because N [(a − 1, 2)] ∩ C 6= N [(a, 3] ∩ C.
Thus (a, 1) and (a + 1, 2) are in U2. Since N [(a, 1)] ∩ C 6= N [(a + 1, 2] ∩ C,
(a−1, 1) and (a+2, 2) are in C and (a+1, 1) ∈ U . But (a+1, 1) and (a+1, 3)
must have a neighbour in C, so (a+ 2, 1) and (a+ 2, 3) are in C. Hence the
column of index a+ 2 is a left barrier. So v receives at least 3× 1

36 by (R3)
from the vertices of this barrier and 1

72 from each of (a− 1, 1) and (a− 1, 3)
by (R2). Hence ε∗(v) ≥ − 11

108 + 3× 1
36 + 2× 1

72 > 0.
– Assume now that v has two U2-neighbours and two neighbours in U3 ∪ U4.

Then its original excess ε(v) is at least 1 − 7
18 − 2 × 7

36 − 2 × 7
54 = − 1

27 .
Observe that (a, 1) and (a, 3) may not both be in U3 for otherwise (a− 1, 2)
and (a + 1, 2) would also be in U3. Hence without loss of generality, we are
in one of the following two subcases:

• {(a−1, 1), (a−1, 3), (a+1, 3)} ⊆ C and (a+1, 1) is in U . Then (a+2, 1)
must be in C. Hence the three vertices (a − 1, 1), (a − 1, 3), (a + 1, 3)
send each 1

72 to v by (R2). Hence ε∗(v) ≥ − 1
27 + 3× 1

72 > 0.
• {(a−2, 2), (a−1, 3), (a+1, 1), (a+2, 2)} ⊆ C and (a−1, 1) and (a+1, 3)

are in U . Then (a − 2, 1) and (a + 2, 3) must be in C. Observe that
the columns of index a − 2 and a + 2 are not barriers since (a − 1, 1)
and (a + 1, 3) are in U1 and (a − 1, 3) and (a + 1, 1) are not in U1. If
(a−2, 2) is not defective, then (a−1, 3) sends at least 1

36 to v by (R2) and
(a+1, 1) sends at least 1

72 to v by (R2). Hence ε∗(v) ≥ − 1
27 + 1

36 + 1
72 > 0.

If (a − 2, 2) is defective, then it is in B3. Since the code is identifying
(a− 3, 1) is in C, so (a− 2, 1) is a border B1-vertex. So it sends 1

36 to v
by (R4). As v receives at least 1

72 from each of (a− 1, 3) and (a+ 1, 1),
we have ε∗(v) ≥ − 1

27 + 1
36 + 2× 1

72 > 0.

We now consider the case when v ∈ B3. Let w be its C-neighbour. w is a
central vertex, for otherwise w would be a generous vertex by Proposition 5 and
thus v would not be defective. By symmetry, we may assume that w = (a−1, 2).



– Assume first that v has one U1-neighbour and two U2-neighbours. Up to
symmetry, the U1-neighbour z is either (a+ 1, 2) or (a, 3).

• If z = (a+ 1, 2), then (a+ 1, 1) and (a+ 1, 3) are in U and so (a− 1, 1)
and (a− 1, 3) are in C. Hence w is in B1 because a defective vertex has
no generous neighbour. Thus w sends 3

18 to v by (R5). So ε∗(v) ≥ 0.
• Assume that z = (a, 3). Then (a−1, 3) and (a+ 1, 3) are in U . Moreover

(a+ 1, 2) and (a, 1) are in U2 and so (a+ 1, 1) is not in C. It follows that
(a − 1, 1), (a + 2, 2), (a + 2, 1) and (a + 2, 3) are in C. The column of
index a+ 2 is a left barrier.
We claim that v receives at least 2

18 from its right and at least 1
18 from

its left. This yields ε∗(v) ≥ 0.
Let us show that v receives 2

18 from its right. If one vertex of the column
of index a+2 is in B1, the vertices of the barrier send at least 1

18+2× 1
36 =

2
18 to v. Hence we may assume that (a+3, 1) , (a+3, 2) and (a+3, 3) are
in U . Furthermore by Proposition 1, (a+ 3, 1) and (a+ 3, 3) are in U2 so
(a+ 4, 1) and (a+ 4, 3) are in C. If (a+ 4, 2) is in C, then (a+ 3, 2) ∈ U2

and so ε((a+ 2, 2)) = 2
9 . Hence v receives at least 2

9 + 2× 1
36 >

2
18 from

its right. If (a + 4, 2) is not in C, then by (R2) (a + 4, 1) and (a + 4, 3)
send in total 1

36 to (a+ 2, 2) which redirect it to v by (R9). In addition,
the barrier send at least 3 × 1

36 to v by (R3). Hence v receives at least
2
18 from its right.
Now, either (a− 1, 2) is in B1 in which case it sends 1

18 to v by (R8), or
(a − 1, 2) is in B2 and sends 1

36 to v by (R7) and (a − 1, 1) is in B2 or
B1 and sends 1

36 to v by (R6) or (R4). In both cases, v receives 1
18 from

its left.

– Assume that v has one U1-neighbour, one U2-neighbour and one neighbour
in U3∪U4. Then ε(v) ≥ 1− 7

18 −
7
18 −

7
36 −

7
54 = − 11

108 . Let t be the neighbour
of v in U3∪U4. By symmetry, we may assume that t = (a, 3) or t = (a+2, 2).

• Assume that t = (a, 3). Then (a− 1, 3), (a+ 1, 3) are in C and (a− 1, 1),
(a+ 1, 1) and (a+ 2, 2) are in U . Thus (a+ 2, 1) is in C.
If (a− 1, 2) is in B1, then it sends 1

18 to v by (R8). If not (a− 1, 2) is in
B2 and thus sends 1

36 to v by (R7). Moreover (a−1, 3) is in B1∪B2 and
thus sends 1

36 by (R4) or (R6). Hence v receives at least 1
18 from its left.

Let us now show that v receives at least 5
54 from its right. Since N [(a+

1, 1)]∩C 6= N [(a+2, 1)]∩C, we have (a+3, 1) ∈ C. Since N [(a+1, 3)]∩
C 6= N [(a+ 2, 3)] ∩ C, we have (a+ 3, 3) ∈ C. If (a+ 3, 2) is in C, then
this vertex is not good. So (a + 1, 3) sends all its excess to v by (R2).
This excess is at least 5

54 . If (a+ 3, 2) is not in C, then (a+ 2, 3) is in C,
because N [(a + 2, 2)] ∩ C 6= N [(a + 1, 1)] ∩ C. Hence (a + 2, 3) is in B1

and it is not generous. So its excess is at least 2
9 and by (R2), it sends

at least 1
9 to v.

Hence v receives at least 1
18 from its left and 5

54 from its right. Thus
ε∗(v) ≥ − 11

108 + 1
18 + 5

54 > 0.
• Assume that t = (a+1, 2). By symmetry, we may assume that (a, 3) ∈ U1.

Then (a− 1, 3), (a+ 1, 3) and (a− 1, 1) are in U and (a+ 1, 1), (a+ 2, 2)
are in C.



Since N [v] ∩ C 6= N [w] ∩ C, necessarily (a − 2, 2) ∈ C. Since (a − 1, 1)
and (a − 1, 3) have different closed neighbourhoods, then a vertex y in
{(a− 2, 1), (a− 2, 3)} is in C. If (a− 2, 2) is in B0, then it sends 1

18 to w
by (R8) ; if (a− 2, 2) is in B1, then it sends at least 1

18 to w by (R5) or
(R8); if (a− 2, 2) is in B2, then (a− 2, 2) sends 1

36 to w by (R7). In any
case, w receives at least 1

36 from (a− 2, 2, ) which it redirects to v with
an additional 1

36 by (R10). So w sends at least 1
18 to v.

Now (a+ 1, 1) has excess at least 5
54 since it is adjacent to no U1 and at

least one U3. Hence it sends at least 5
108 to v by (R2).

Thus ε∗(v) ≥ − 11
108 + 1

18 + 5
108 = 0.

– Assume that v has one U1-neighbour and two neighbours in U3 ∪ U4. Then
ε(v) ≥ 1− 7

18 −
7
18 − 2× 7

54 = − 1
27 .

Without loss of generality, (a− 1, 3), (a+ 1, 3) and (a+ 2, 2) are in C, and
(a− 1, 1), (a+ 1, 1) are in U . Then the vertex (a+ 1, 3) had excess at least
17
108 since it is adjacent to two U3 and no U1. Thus by (R2) it sends at least
17
216 to v. So ε∗(v) ≥ − 1

27 + 17
216 > 0.

Hence at the end, all the C-vertices have non-negative final excess and final
weight at least 7

18 . This finishes the proof of Theorem 4.
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