23 research outputs found

    Simulations of radio emission from air showers with CORSIKA 8

    Get PDF

    Parallel processing of radio signals and detector arrays in CORSIKA 8

    Get PDF
    This contribution describes some recent advances in the parallelization of the generation and processing of radio signals emitted by particle showers in CORSIKA 8. CORSIKA 8 is a Monte Carlo simulation framework for modeling ultra-high energy particle cascades in astroparticle physics. The aspects associated with the generation and processing of radio signals in antennas arrays are reviewed, focusing on the key design opportunities and constraints for deployment of multiple threads on such calculations. The audience is also introduced to Gyges, a lightweight, header-only and flexible multithread self-adaptive scheduler written compliant with C++17 and C++20, which is used to distribute and manage the worker computer threads during the parallel calculations. Finally, performance and scalability measurements are provided and the integration into CORSIKA 8 is commented

    Hadron cascades in CORSIKA 8

    Get PDF
    We present characteristics of hadronic cascades from interactions of cosmic rays in the atmosphere, simulated by the novel CORSIKA 8 framework. The simulated spectra of secondaries, such as pions, kaons, baryons and muons, are compared with the cascade equations solvers MCEq in air shower mode, and full 3D air shower Monte Carlo simulations using the legacy CORSIKA 7. A novel capability of CORSIKA 8 is the simulation of cascades in media other than air, widening the scope of potential applications. We demonstrate this by simulating cosmic ray showers in the Mars atmosphere, as well as simulating a shower traversing from air into water. The CORSIKA 8 framework demonstrates good accuracy and robustness in comparison with previous results, in particular in those relevant for the production of muons in air showers. Furthermore, the impact of forward ρ0^{0} production on air showers is studied and illustrated

    CORSIKA 8

    No full text
    The CORSIKA 8 project is an international collaboration of scientists working together to deliver the most modern, flexible, robust and efficient framework for the simulation of ultra-high energy secondary particle cascades in matter. The main application is for cosmic ray air shower simulations, but it can also be applied to other problems in astro(particle)-physics, particle physics and nuclear physics. Besides a comprehensive and state-of-the-art collection of physics models as well as algorithms relevant for the field, also all possible interfaces to hardware acceleration (e.g. GPU) and parallelization (vectorization, multi-threading, multi-core) will be provided. We present the status and roadmap of this project. This code will soon be available for novel explorative studies and phenomonological research, and at the same time for massive productions runs for experiments
    corecore