9 research outputs found

    Photometry of the Didymos System across the DART Impact Apparition

    Get PDF
    On 2022 September 26, the Double Asteroid Redirection Test (DART) spacecraft impacted Dimorphos, the satellite of binary near-Earth asteroid (65803) Didymos. This demonstrated the efficacy of a kinetic impactor for planetary defense by changing the orbital period of Dimorphos by 33 minutes. Measuring the period change relied heavily on a coordinated campaign of lightcurve photometry designed to detect mutual events (occultations and eclipses) as a direct probe of the satellite’s orbital period. A total of 28 telescopes contributed 224 individual lightcurves during the impact apparition from 2022 July to 2023 February. We focus here on decomposable lightcurves, i.e., those from which mutual events could be extracted. We describe our process of lightcurve decomposition and use that to release the full data set for future analysis. We leverage these data to place constraints on the postimpact evolution of ejecta. The measured depths of mutual events relative to models showed that the ejecta became optically thin within the first ∼1 day after impact and then faded with a decay time of about 25 days. The bulk magnitude of the system showed that ejecta no longer contributed measurable brightness enhancement after about 20 days postimpact. This bulk photometric behavior was not well represented by an HG photometric model. An HG 1 G 2 model did fit the data well across a wide range of phase angles. Lastly, we note the presence of an ejecta tail through at least 2023 March. Its persistence implied ongoing escape of ejecta from the system many months after DART impact

    COMPSIM A Computer Center Management Simulation

    No full text
    "This paper describes a computer center management simulation entitled COMPSIM. This simulation deals with the operations and the management of a hypothetical computer center. The simulation is designed to teach management decision-making skills that are pertinent to the data processing industry, such as computer equipment selection, data processing personnel decisions, and marketing of computer services. The paper presents: (i) the purpose of the simulation, (ii) the simulation environment, (iii) the requisite skills of the participants, (iv) the major decisions, and (v) the computer center’s objectives.

    Near-Earth Asteroid 2005 CR37: Radar Images and Photometry of a Candidate Contact Binary

    No full text
    Arecibo (2380 MHz, 13 cm) radar observations of 2005 CR37 provide detailed images of a candidate contact binary: a 1.8-km-long, extremely bifurcated object. Although the asteroid's two lobes are round, there are regions of modest topographic relief, such as an elevated, 200-m-wide facet, that suggest that the lobes are geologically more complex than either coherent fragments or homogeneous rubble piles. Since January 1999, about 9% of NEAs larger than approx.200 m imaged by radar can be described as candidate contact binaries

    A radar survey of M- and X-class asteroids

    No full text
    We observed ten M- and X-class main-belt asteroids with the Arecibo Observatory\u27s S-band (12.6 cm) radar. The X-class asteroids were targeted based on their albedos or other properties which suggested they might be M-class. This work brings the total number of main-belt M-class asteroids observed with radar to 14. We find that three of these asteroids have rotation rates significantly different from what was previously reported. Based on their high radar albedo, we find that only four of the fourteen-16 Psyche, 216 Kleopatra, 758 Mancunia, and 785 Zwetana-are almost certainly metallic. 129 Antigone has a moderately high radar albedo and we suggest it may be a CH/CB/Bencubbinite parent body. Three other asteroids, 97 Klotho, 224 Oceana, and 796 Sarita have radar albedos significantly higher than the average main belt asteroid and we cannot rule out a significant metal content for them. Five of our target asteroids, 16 Psyche, 129 Antigone, 135 Hertha, 758 Mancunia, and 785 Zwetana, show variations in their radar albedo with rotation. We can rule out shape and composition in most cases, leaving variations in thickness, porosity, or surface roughness of the regolith to be the most likely causes. With the exception of 129 Antigone, we find no hydrated M-class asteroids (W-class; Rivkin, A.S., Howell, E.S., Lebofsky, L.A., Clark, B.E., Britt, D.T., 2000. Icarus 145, 351-368) to have high radar albedos. © 2008 Elsevier Inc. All rights reserved

    Radar and photometric observations and shape modeling of contact binary near-Earth Asteroid (8567) 1996 HW1

    No full text
    We observed near-Earth Asteroid (8567) 1996 HW1 at the Arecibo Observatory on six dates in September 2008, obtaining radar images and spectra. By combining these data with an extensive set of new lightcurves taken during 2008-2009 and with previously published lightcurves from 2005, we were able to reconstruct the object's shape and spin state. 1996 HW1 is an elongated, bifurcated object with maximum diameters of 3.8 × 1.6 × 1.5 km and a contact-binary shape. It is the most bifurcated near-Earth asteroid yet studied and one of the most elongated as well. The sidereal rotation period is 8.76243 ± 0.00004 h and the pole direction is within 5° of ecliptic longitude and latitude (281°, -31°). Radar astrometry has reduced the orbital element uncertainties by 27% relative to the a priori orbit solution that was based on a half-century of optical data. Simple dynamical arguments are used to demonstrate that this asteroid could have originated as a binary system that tidally decayed and merged
    corecore