16 research outputs found

    Discovery of Hepatitis C Virus: Nobel Prize in Physiology and Medicine 2020

    Get PDF
    Scientists were successful in discovering Hepatitis A and B, but there is another virus which has a long incubation period, many people are asymptomatic and cause adverse effects. Three scientists Harvey J Alter, Michael Houghton and Charles M Rice who have contributed their work in discovering a non-A, non-B hepatitis virus called Hepatitis C. Hepatitis is a disorder associated with the functioning hepatic cells in the liver. The person infected with Hepatitis C will have poor functioning of liver, vomiting, fatigue, jaundice and appetite. In this paper, I am going to explain about the Hepatitis C virus, and the work was done by three scientists and various research around it

    Towards automated cancer screening: label-free classification of fixed cell samples using wavelength modulated Raman spectroscopy

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council and Medical Research Council [EP/L016559/1, EP/P030017/1], and CRUK [A18075 Core Award].The ability to provide quantitative, objective and automated pathological analysis would provide enormous benefits for national cancer screening programmes, in terms of both resource reduction and improved patient wellbeing. The move towards molecular pathology through spectroscopic methods shows great promise, but has been restricted by spectral quality, acquisition times and lack of direct clinical application. In this paper, we present the application of wavelength modulated Raman spectroscopy for the automated label- and fluorescence-free classification of fixed squamous epithelial cells in suspension, such as those produced during a cervical smear test. Direct comparison with standard Raman spectroscopy shows marked improvement of sensitivity and specificity when considering both human papillomavirus (sensitivity +12.0%, specificity +5.3%) and transformation status (sensitivity +10.3%, specificity +11.1%). Studies on the impact of intracellular sampling location and storage effects suggest that wavelength modulated Raman spectroscopy is sufficiently robust to be used in fixed cell classification, but requires further investigations of potential sources of molecular variation in order to improve current clinical tools.Publisher PDFPeer reviewe

    Hybrid feature selection and classification technique for early prediction and severity of diabetes type 2.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model's first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system's result is to enhance the classifier's performance in spotting illness early

    Proteus syndrome: A rare case report

    No full text
    Proteus syndrome (PS) is a rare hamartomatous disorder characterized by various cutaneous and subcutaneous lesions, including vascular malformations, lipomas, hyperpigmentation, and several types of nevi. Partial gigantism with limb or digital overgrowth is pathognomonic of PS. We report a rare case of PS in a 50-year-old man who presented with inferior wall myocardial infarction and was incidentally detected to have hypertrophy of index and middle fingers of both the hands

    Proposed architecture for diagnosing diabetes.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.</div

    Steps for traditional pre-processing of data.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.</div

    Correlation coefficient matrix.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.</div

    Feature importance towards prediction of T2DM.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.</div

    Performance measure.

    No full text
    Diabetes prediction is an ongoing study topic in which medical specialists are attempting to forecast the condition with greater precision. Diabetes typically stays lethargic, and on the off chance that patients are determined to have another illness, like harm to the kidney vessels, issues with the retina of the eye, or a heart issue, it can cause metabolic problems and various complexities in the body. Various worldwide learning procedures, including casting a ballot, supporting, and sacking, have been applied in this review. The Engineered Minority Oversampling Procedure (Destroyed), along with the K-overlay cross-approval approach, was utilized to achieve class evening out and approve the discoveries. Pima Indian Diabetes (PID) dataset is accumulated from the UCI Machine Learning (UCI ML) store for this review, and this dataset was picked. A highlighted engineering technique was used to calculate the influence of lifestyle factors. A two-phase classification model has been developed to predict insulin resistance using the Sequential Minimal Optimisation (SMO) and SMOTE approaches together. The SMOTE technique is used to preprocess data in the model’s first phase, while SMO classes are used in the second phase. All other categorization techniques were outperformed by bagging decision trees in terms of Misclassification Error rate, Accuracy, Specificity, Precision, Recall, F1 measures, and ROC curve. The model was created using a combined SMOTE and SMO strategy, which achieved 99.07% correction with 0.1 ms of runtime. The suggested system’s result is to enhance the classifier’s performance in spotting illness early.</div
    corecore