2,292 research outputs found

    Systematic studies of binding energy dependence of neutron - proton momentum correlation function

    Full text link
    Hanbury Brown-Twiss (HBT) results of the neutron-proton correlation function have been systematically investigated for a series nuclear reactions with light projectiles with help of Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy per nucleon of the projectiles and the strength of the neutron-proton HBT at small relative momentum has been obtained. Results show that neutron-proton HBT results are sensitive to the binding energy per nucleon.Comment: 10 pages, 5 figures; accepted by Journal of Physics G: Nuclear and Particle Physic

    Spin transfer torques in nonlocal lateral spin valve

    Full text link
    We report a theoretical study on the spin and electron transport in the nonlocal lateral spin valve with non-collinear magnetic configuration. The nonlocal magnetoresistance, defined as the voltage difference on the detection lead over the injected current, is derived analytically. The spin transfer torques on the detection lead are calculated. It is found that spin transfer torques are symmetrical for parallel and antiparallel magnetic configurations, which is different from that in conventional sandwiched spin valve.Comment: 7 papges, 5 figure

    Nucleon-nucleon momentum correlation function for light nuclei

    Get PDF
    Nucleon-nucleon momentum correlation function have been presented for nuclear reactions with neutron-rich or proton-rich projectiles using a nuclear transport theory, namely Isospin-Dependent Quantum Molecular Dynamics model. The relationship between the binding energy of projectiles and the strength of proton-neutron correlation function at small relative momentum has been explored, while proton-proton correlation function shows its sensitivity to the proton density distribution. Those results show that nucleon-nucleon correlation function is useful to reflect some features of the neutron- or proton-halo nuclei and therefore provide a potential tool for the studies of radioactive beam physics.Comment: Talk given at the 18th International IUPAP Conference on Few-Body Problems in Physics (FB18), Santos, Brasil, August 21-26, 2006. To appear in Nucl. Phys.

    Stability of 1+1 dimensional causal relativistic viscous hydrodynamics

    Full text link
    The stability of the 1+1 dimensional solution of Israel-Stewart theory is investigated. Firstly, the evolution of the temperature and the ratio of the bulk pressure over the equilibrium pressure of the background is explored. Then the stability with linear perturbations is studied by using the Lyapunov direct method. It shows that the shear viscosity may weaken the instability induced by the large peak of bulk viscosity around the phase transition temperature TcT_c.Comment: 18 pages, 4 figures, 1 table; to be published in Nuclear Physics

    Seasonal variation of the deep limb of the Pacific Meridional Overturning circulation at Yap-Mariana junction

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Wang, J., Ma, Q., Wang, F., Lu, Y., & Pratt, L. J. Seasonal variation of the deep limb of the Pacific Meridional Overturning circulation at Yap-Mariana junction. Journal of Geophysical Research: Oceans, 125(7), (2020): e2019JC016017, doi:10.1029/2019JC016017.This study reveals the seasonal variability of the lower and upper deep branches of the Pacific Meridional Overturning Circulation (L‐PMOC and U‐PMOC) in the Yap‐Mariana Junction (YMJ) channel, a major gateway for deep flow into the western Pacific. On the western side of the YMJ channel, mooring observations in 2017 and in 1997 show the seasonal phase of the L‐PMOC at depths of 3,800–4,400 m: strong northward flow with speed exceeding 20 cm s−1 and lasting from December to next May and weak flow during the following 6 months. On the eastern side of the channel, mooring observations during 2014–2017 show two southward deep flows with broadly seasonal phases, one being the return flow of L‐PMOC below ~4,000 m and with the same phase of L‐PMOC but reduced magnitude. The second, shallower, southward deep flow corresponds to the U‐PMOC observed within 3,000–3,800 m and with opposite phase of L‐PMOC, that is, strong (weak) southward flow appearing during June–November (December–May). Seasonal variations of the L‐PMOC and U‐PMOC are accompanied by the seasonal intrusions of the Lower and Upper Circumpolar Waters (LCPW and UCPW) in lower and upper deep layers, which change the isopycnal structure and the deep currents in a way consistent with geostrophic balance.This study is supported by the National Natural Science Foundation of China (grants 91958204 and 41776022), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant XDA22000000), the Key Research Program of Frontier Sciences, CAS (grant QYZDB‐SSW‐SYS034). F. Wang thanks the support from the Scientific and Technological Innovation Project by Qingdao National Laboratory for Marine Science and Technology (grant 2016ASKJ12), the National Program on Global Change and Air‐Sea Interaction (grant GASI‐IPOVAI‐01‐01), and the National Natural Science Foundation of China (grants 41730534 and 41421005). L. Pratt gratefully acknowledges the support by NSF (grant OCE‐1657870). Jianing Wang and Qiang Ma contributed equally to this work

    Statistical nature of cluster emission in nuclear liquid-vapour phase coexistence

    Full text link
    The emission of nuclear clusters is investigated within the framework of isospin dependent lattice gas model and classical molecular dynamics model. It is found that the emission of individual cluster which is heavier than proton is almost Poissonian except near the transition temperature at which the system is leaving the liquid-vapor phase coexistence and the thermal scaling is observed by the linear Arrhenius plots which is made from the average multiplicity of each cluster versus the inverse of temperature in the liquid vapor phase coexistence. The slopes of the Arrhenius plots, {\it i.e.} the "emission barriers", are extracted as a function of the mass or charge number and fitted by the formula embodied with the contributions of the surface energy and Coulomb interaction. The good agreements are obtained in comparison with the data for low energy conditional barriers. In addition, the possible influences of the source size, Coulomb interaction and "freeze-out" density and related physical implications are discussed

    Effects of final state interactions on charge separation in relativistic heavy ion collisions

    Get PDF
    Charge separation is an important consequence of the Chiral Magnetic Effect. Within the framework of a multi-phase transport model, the effects of final state interactions on initial charge separation are studied. We demonstrate that charge separation can be significantly reduced by the evolution of the Quark-Gluon Plasma produced in relativistic heavy ion collisions. Hadronization and resonance decay can also affect charge separation. Moreover, our results show that the Chiral Magnetic Effect leads to the modification of the relation between the charge azimuthal correlation and the elliptic flow that is expected from transverse momentum conservation only. The transverse momentum and pseudorapidity dependences of, and the effects of background on the charge azimuthal correlation are also discussed.Comment: 14 pages, 7 figures; v2: 3 figures added, discussions extende
    • 

    corecore