9 research outputs found

    Adsorption and dissociation of molecular oxygen on the (0001) surface of double hexagonal close packed americium

    Full text link
    In our continuing attempts to understand theoretically various surface properties such as corrosion and potential catalytic activity of actinide surfaces in the presence of environmental gases, we report here the first ab initio study of molecular adsorption on the double hexagonal packed (dhcp) americium (0001) surface. Dissociative adsorption is found to be energetically more favorable compared to molecular adsorption. The most stable configuration corresponds to a horizontal approach molecular dissociation with the oxygen atoms occupying neighboring h3 sites, with chemisorption energies at the NSOC and SOC theoretical levels being 9.395 eV and 9.886 eV, respectively. The corresponding distances of the oxygen molecule from the surface and oxygen-oxygen distance were found to be 0.953 Ang. and 3.731 Ang., respectively. Overall our calculations indicate that chemisorption energies in cases with SOC are slightly more stable than the cases with NSOC in the 0.089-0.493 eV range. The work functions and net magnetic moments respectively increased and decreased in all cases compared with the corresponding quantities of the bare dhcp Am (0001) surface. The adsorbate-substrate interactions have been analyzed in detail using the partial charges inside the muffin-tin spheres, difference charge density distributions, and the local density of states. The effects, if any, of chemisorption on the Am 5f electron localization-delocalization characteristics in the vicinity of the Fermi level are also discussed.Comment: 6 tables, 10 figure

    Exploring the Ring-Opening Pathways in the Reaction of Morpholinyl Radicals with Oxygen Molecule

    No full text
    Quantum chemistry calculations using hybrid density functional theory and the coupled-cluster method have been performed to investigate the ring-opening pathways in the oxidation of morpholine (1-oxa-4-aza-cyclohexane). Hydrogen abstraction can form two different carbon-centered radicals, morpholin-2-yl or morpholin-3-yl, or the nitrogen-centered radical, morpholin-4-yl, none of which are found to have low-energy pathways to ring-opening. Extensive exploration of multiple reaction pathways following molecular oxygen addition to these three radicals revealed two competitive low energy pathways to ring-opening. Addition of O<sub>2</sub> to either carbon-centered radical, followed by a 1,4-H shifting mechanism can yield a long-lived cyclic epoxy intermediate, susceptible to ring-opening, following further radical attack. In particular, the second pathway begins with O<sub>2</sub> attack on morpholin-2-yl, followed by a 1,5-H shift and a unimolecular ring-opening without having to overcome a high barrier, releasing a significant amount of heat in the overall ring-opening reaction. The calculations provide valuable context for the development of mechanisms for the low temperature combustion chemistry of nitrogen and oxygen-containing fuels

    Atomic-Scale Structure and Stability of the Low-Index Surfaces of Pyrochlore Oxides

    No full text
    The multifunctional properties of complex ternary oxides such as pyrochlores are often influenced by surface structure. Optimizing the surface-driven attributes of these materials necessitates a detailed understanding of the structure and chemical composition of those surfaces. Here we report atomistic simulations elucidating the diverse atomic-scale structures of a set of low-index surfaces [(100), (110), (111), and (112)] in pyrochlore compounds as a function of both A and B cation chemistry. In pyrochlores, the low-index facets are all dipolar, requiring the introduction of surface defects to eliminate the surface dipole. We find that, due to the corresponding higher coordination of the surface cations, the (110) facet is the most energetically stable in all of the compounds considered, an interesting contrast to fluorite, in which the (111) surface is most stable. We also reveal a correlation between the surface energy and the energy to disorder the pyrochlore as a function of B cation chemistry, implying a similar physical origin for the two phenomena. Further, we find that surface rumpling is common across all pyrochlore compounds. An even more interesting feature emerging at these surfaces is the formation of extended structural defects such as steps and trenches, which are found to be stable after high-temperature annealing. As the formation of these features is a consequence of surface defects introduced to eliminate the surface dipole, we propose that the superior surface properties of materials of pyrochlores are due to these extended structural features, which are a direct consequence of the inherent dipole at the surfaces

    AN AB INITIO

    No full text
    corecore