1,285 research outputs found

    A standard test case suite for two-dimensional linear transport on the sphere

    Get PDF
    It is the purpose of this paper to propose a standard test case suite for two-dimensional transport schemes on the sphere intended to be used for model development and facilitating scheme intercomparison. The test cases are designed to assess important aspects of accuracy in geophysical fluid dynamics such as numerical order of convergence, "minimal" resolution, the ability of the transport scheme to preserve filaments, transport "rough" distributions, and to preserve pre-existing functional relations between species/tracers under challenging flow conditions. <br><br> The experiments are designed to be easy to set up. They are specified in terms of two analytical wind fields (one non-divergent and one divergent) and four analytical initial conditions (varying from smooth to discontinuous). Both conventional error norms as well as novel mixing and filament preservation diagnostics are used that are easy to implement. The experiments pose different challenges for the range of transport approaches from Lagrangian to Eulerian. The mixing and filament preservation diagnostics do not require an analytical/reference solution, which is in contrast to standard error norms where a "true" solution is needed. Results using the CSLAM (Conservative Semi-Lagrangian Multi-tracer) scheme on the cubed-sphere are presented for reference and illustrative purposes

    Contrasting local and long-range-transported warm ice-nucleating particles during an atmospheric river in coastal California, USA

    Get PDF
    Ice-nucleating particles (INPs) have been found to influence the amount, phase and efficiency of precipitation from winter storms, including atmospheric rivers.Warm INPs, those that initiate freezing at temperatures warmer than -10°C, are thought to be particularly impactful because they can create primary ice in mixed-phase clouds, enhancing precipitation efficiency. The dominant sources of warm INPs during atmospheric rivers, the role of meteorology in modulating transport and injection of warm INPs into atmospheric river clouds, and the impact of warm INPs on mixed-phase cloud properties are not well-understood. In this case study, time-resolved precipitation samples were collected during an atmospheric river in northern California, USA, during winter 2016. Precipitation samples were collected at two sites, one coastal and one inland, which are separated by about 35 km. The sites are sufficiently close that air mass sources during this storm were almost identical, but the inland site was exposed to terrestrial sources of warm INPs while the coastal site was not. Warm INPs were more numerous in precipitation at the inland site by an order of magnitude. Using FLEXPART (FLEXible PARTicle dispersion model) dispersion modeling and radar-derived cloud vertical structure, we detected influence from terrestrial INP sources at the inland site but did not find clear evidence of marine warm INPs at either site.We episodically detected warm INPs from long-range-transported sources at both sites. By extending the FLEXPART modeling using a meteorological reanalysis, we demonstrate that long-range-transported warm INPs were observed only when the upper tropospheric jet provided transport to cloud tops. Using radar-derived hydrometeor classifications, we demonstrate that hydrometeors over the terrestrially influenced inland site were more likely to be in the ice phase for cloud temperatures between 0 and -10°C. We thus conclude that terrestrial and long-rangetransported aerosol were important sources of warm INPs during this atmospheric river. Meteorological details such as transport mechanism and cloud structure were important in determining (i) warm INP source and injection temperature and (ii) ultimately the impact of warm INPs on mixed-phase cloud properties

    Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    No full text
    International audienceContinuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were carried out in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area ? 2006 campaign (MCMA-2006) between 7?27 March, 2006. Biomass and organic carbon (OC) particle types were found to dominate the accumulation mode both day and night. The concentrations of both organic carbon and biomass particles were roughly equal early in the morning, but biomass became the largest contributor to the accumulation mode mass from the late morning until early evening. The diurnal pattern can be attributed to aging and/or a change in meteorology. Fresh elemental carbon (EC) particles were observed during rush hour. The majority of the EC particles were mixed with nitrate, sulfate, organic carbon and potassium. Submicron particles from industrial sources in the northeast were composed of an internal mixture of Pb, Zn, EC and Cl and peaked early in the morning. A unique nitrogen-containing organic (NOC) particle type was observed, and is hypothesized to be from industrial emissions based on the temporal profile and back trajectory analysis. This study provides unique insights into the real-time changes in single particle mixing state as a function of size and time for aerosols in Mexico City. These new findings indicate that biomass burning and industrial operations make significant contributions to particles in Mexico City. These sources have received relatively little attention in previous intensive field campaigns

    Measurement of ambient aerosols in northern Mexico City by single particle mass spectrometry

    Get PDF
    Continuous ambient measurements with aerosol time-of-flight mass spectrometry (ATOFMS) were made in an industrial/residential section in the northern part of Mexico City as part of the Mexico City Metropolitan Area-2006 campaign (MCMA-2006). Results are presented for the period of 15–27 March 2006. The submicron size mode contained both fresh and aged biomass burning, aged organic carbon (OC) mixed with nitrate and sulfate, elemental carbon (EC), nitrogen-organic carbon, industrial metal, and inorganic NaK inorganic particles. Overall, biomass burning and aged OC particle types comprised 40% and 31%, respectively, of the submicron mode. In contrast, the supermicron mode was dominated by inorganic NaK particle types (42%) which represented a mixture of dry lake bed dust and industrial NaK emissions mixed with soot. Additionally, aluminosilicate dust, transition metals, OC, and biomass burning contributed to the supermicron particles. Early morning periods (2–6 a.m.) showed high fractions of inorganic particles from industrial sources in the northeast, composed of internal mixtures of Pb, Zn, EC and Cl, representing up to 73% of the particles in the 0.2–3μm size range. A unique nitrogen-containing organic carbon (NOC) particle type, peaking in the early morning hours, was hypothesized to be amines from local industrial emissions based on the time series profile and back trajectory analysis. A strong dependence on wind speed and direction was observed in the single particle types that were present during different times of the day. The early morning (3:30–10 a.m.) showed the greatest contributions from industrial emissions. During mid to late mornings (7–11 a.m.), weak northerly winds were observed along with the most highly aged particles. Stronger winds from the south picked up in the late morning (after 11 a.m.), resulting in a decrease in the concentrations of the major aged particle types and an increase in the number fraction of fresh biomass particles. The highest wind speeds were correlated with the highest number fraction of fresh biomass particles (up to 76% of the submicron number fraction) when winds were coming directly from fires that were located south and southeast of the city based on MODIS fire count data. This study provides a unique clock of hourly changes in single particle mixing state and sources as a function of meteorology in Mexico City. These new findings indicate that biomass burning and industrial emissions can make significant contributions to primary particle loadings in Mexico City that are strongly coupled with local meteorology

    Ice Initiation by Aerosol Particles: Measured and Predicted Ice Nuclei Concentrations versus Measured Ice Crystal Concentrations in an Orographic Wave Cloud

    Get PDF
    The initiation of ice in an isolated orographic wave cloud was compared with expectations based on ice nucleating aerosol concentrations and with predictions from new ice nucleation parameterizations applied in a cloud parcel model. Measurements of ice crystal number concentrations were found to be in good agreement both with measured number concentrations of ice nuclei feeding the clouds and with ice nuclei number concentrations determined from the residual nuclei of cloud particles collected by a counterflow virtual impactor. Using lognormal distributions fitted to measured aerosol size distributions and measured aerosol chemical compositions, ice nuclei and ice crystal concentrations in the wave cloud were reasonably well predicted in a 1D parcel model framework. Two different empirical parameterizations were used in the parcel model: a parameterization based on aerosol chemical type and surface area and a parameterization that links ice nuclei number concentrations to the number concentrations of particles with diameters larger than 0.5 μm. This study shows that aerosol size distribution and composition measurements can be used to constrain ice initiation by primary nucleation in models. The data and model results also suggest the likelihood that the dust particle mode of the aerosol size distribution controls the number concentrations of the heterogeneous ice nuclei, at least for the lower temperatures examined in this case

    Flow cytometric cell cycle analysis of cultured brown bear fibroblast cells

    Get PDF
    The aim of this study was to assess by flow cytometry the cell cycle of brown bear fibroblast cells cultured under different growth conditions. Skin biopsies were taken in Cantabria (Spain) from a live, anaesthetized brown bear. DNA analysis was performed by flow cytometry following cell DNA staining with propidium iodide. Serum starvation increased (P < 0.01) the percentage of G0/G1 phase cells (92.7 0.86) as compared to cycling cells (39.7 0.86) or cells cultured to confluency (87.3 0.86). DMSO included for 48 h in the culture significantly increased (P < 0.01) the percentage of G0/G1 phase of the cell cycle at all concentrations used and decreased percentages of S phase in a dose-dependent fashion. Roscovitine increased the G0/G1 phase of the cell cycle (P < 0.01) at 15 mM concentration. Interestingly, the G2/M stage significantly increased at 30 and 50 mM compared to the control and 15 mM (P < 0.02). The cell cycle of brown bear adult fibroblast cells can be successfully synchronized under a variety of culture conditions
    corecore