2,207 research outputs found

    An economic evaluation of liquid manure disposal from confinement finishing hogs

    Get PDF
    Bibliography: p. 28

    Direct observations of the atmospheric processing of Asian mineral dust

    Get PDF
    The accumulation of secondary acids and ammonium on individual mineral dust particles during ACE-Asia has been measured with an online single-particle mass spectrometer, the ATOFMS. Changes in the amounts of sulphate, nitrate, and chloride mixed with dust particles correlate with air masses from different source regions. The uptake of secondary acids depended on the individual dust particle mineralogy; high amounts of nitrate accumulated on calcium-rich dust while high amounts of sulphate accumulated on aluminosilicate-rich dust. Oxidation of S(IV) to S(VI) by iron in the aluminosilicate dust is a possible explanation for this enrichment of sulphate, which has important consequences for the fertilization of remote oceans by soluble iron. This study shows the segregation of sulphate from nitrate and chloride in individual aged dust particles for the first time. A transport and aging timeline provides an explanation for the observed segregation. Our data suggests that sulphate became mixed with the dust first. This implies that the transport pathway is more important than the reaction kinetics in determining which species accumulate on mineral dust. Early in the study, dust particles in volcanically influenced air masses were mixed predominately with sulphate. Dust mixed with chloride then dominated over sulphate and nitrate when a major dust front reached the R. V. Ronald Brown. We hypothesize that the rapid increase in chloride on dust was due to mixing with HCl(g) released from acidified sea salt particles induced by heterogeneous reaction with volcanic SO<sub>2</sub>(g), prior to the arrival of the dust front. The amount of ammonium mixed with dust correlated strongly with the total amount of secondary acid reaction products in the dust. Submicron dust and ammonium sulphate were internally mixed, contrary to frequent reports that they exist as external mixtures. The size distribution of the mixing state of dust with these secondary species validates previous mechanisms of the atmospheric processing of dust and generally agrees with simulated aerosol chemistry from the STEM-2K3 model. This series of novel results has important implications for improving the treatment of dust in global chemistry models and highlights a number of key processes that merit further investigation through laboratory and field studies

    Influence of stream sediments on distribution of macrobenthos

    Get PDF
    Studies were conducted in the laboratory and field to determine the substrate relationships of five species of stream insects representing the orders Ephemeroptera, Plecoptera, Trichoptera and Diptera. Various combinations of pebble and sand were tested in the presence or absence of cobbles. Substrates with cobble were generally preferred over substrates without cobble. The preference for cobble generally increased as the sediments around the cobble decreased in size. Substrates with unembedded cobble were slightly preferred over half-embedded cobble: completely embedded cobble in fine sand proved unacceptable to most species. Three types of substrate-distribution patterns are recognized: stream insects which inhabit substrate surfaces: interstices: and both substrate surfaces and interstices

    Mindfulness on-the-go: Effects of a mindfulness meditation app on work stress and well-being

    Get PDF
    We investigated whether a mindfulness meditation program delivered via a smartphone application could improve psychological well-being, reduce job strain, and reduce ambulatory blood pressure during the workday. Participants were 238 healthy employees from two large United Kingdom companies that were randomized to a mindfulness meditation practice app or a wait-list control condition. The app offered 45 prerecorded 10- to 20-min guided audio meditations. Participants were asked to complete one meditation per day. Psychosocial measures and blood pressure throughout one working day were measured at baseline and eight weeks later; a follow-up survey was also emailed to participants 16 weeks after the intervention start. Usage data showed that during the 8-week intervention period, participants randomized to the intervention completed an average of 17 meditation sessions (range 0-45 sessions). The intervention group reported significant improvement in well-being, distress, job strain, and perceptions of workplace social support compared to the control group. In addition, the intervention group had a marginally significant decrease in self-measured workday systolic blood pressure from pre- to post-intervention. Sustained positive effects in the intervention group were found for well-being and job strain at the 16-week follow-up assessment. This trial suggests that short guided mindfulness meditations delivered via smartphone and practiced multiple times per week can improve outcomes related to work stress and well-being, with potentially lasting effects

    Factors affecting Gunnison sage-grouse conservation in Utah

    Get PDF

    Gunnison Sage-grouse Conservation in Utah

    Get PDF

    Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Get PDF
    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm
    corecore