640 research outputs found
NASA's Centennial Challenge for 3D-Printed Habitat: Phase II Outcomes and Phase III Competition Overview
The 3D-Printed Habitat Challenge is part of NASA's Centennial Challenges Program. NASA's Centennial Challenges seek to accelerate innovation in aerospace technology development through public competitions. The 3D-Printed Habitat Challenge, launched in 2015, is part of the Centennial Challenges portfolio and focuses on habitat design and development of large-scale additive construction systems capable of fabricating structures from in situ materials and/or mission recyclables. The challenge is a partnership between NASA, Caterpillar (primary sponsor), Bechtel, Brick and Mortar Ventures, and Bradley University. Phase I of the challenge was an architectural concept competition in which participants generated conceptual renderings of habitats on Mars which could be constructed using locally available resources. Phase II asked teams to develop the printing systems and material formulations needed to translate these designs into reality. Work under the phase II competition, which concluded in August 2017 with a head to head competition at Caterpillar's Edward Demonstration Facility in Peoria, Illinois, is discussed, including the key technology development outcomes resulting from this portion of the competition. The phase III competition consists of both virtual and construction subcompetitions. Virtual construction asks teams to render high fidelity architectural models of a habitat and all the accompanying information required for construction of the pressure retaining and load bearing portions of the structure. In construction phase III, teams are asked to scale up their printing systems to produce a 1/3 scale habitat on-site at Caterpillar. The levels of the phase III construction competition (which include printing of a foundation and printing and hydrostatic testing of a habitat element) are discussed. Phase III construction also has an increased focus on autonomy, as these systems are envisioned for robotic precursor missions which would buildup infrastructure prior to the arrival of crew. Results of the phase III competition through July 2017 (which includes virtual construction level 1) are discussed. This Centennial Challenge enables an assessment of the scaleability and efficacy of various processes, material systems, and designs for planetary construction. There are also near-term terrestrial applications, from disaster response to affordable housing and infrastructure refurbishment, for these technologies
Cytoskeletal Changes During Adhesion and Release: A Comparison of Human and Nonhuman Primate Platelets
The organization of cytoskeletal proteins in whole-mount adherent platelets from African green monkeys and normal human volunteers has been studied by SEM, high vacuum electron microscopy (HVEM) and conventional (120 kV) electron microscopy. We describe three distinct organizational zones, the Central Matrix, the Trabecular Zone and the Peripheral Web in spread platelets from both sources. The Central Matrix is an ill-defined superstructure of 80-100 Ã… filaments of short length which enshrouded the granules, dense bodies, mitochondria and elements of the open-channel and dense-tubular systems. The latter, identified through the use of peroxidase cytochemistry with the whole mounts, is an anastomosing network of elongate saccules having diameters of 600-1200 Ã…. The Trabecular Zone, which encircles the Central Matrix, contains 165, 80-100 and 30-50 Ã… filaments in an open lattice of irregular lattice spacing. The outermost region of the cells, the Peripheral Web, is comprised of 70 Ã… filaments organized in a honeycomb lattice with center to center spacing in the range 150-300 Ã…. This pattern for the spread cells is not consistently observed in cells during the early stages of adhesion; therefore, correlations of SEM and TEM observations are made for the various stages of adhesion/activation
Recommended from our members
Electron cyclotron heating experiments on the DIII-D tokamak
Initial experiments on heating and current drive using second harmonic electron cyclotron heating (ECH) are being performed on the DIII-D tokamak using the new 110 GHz ECH system. Modulation of the ECH power in the frequency range 50 to 300 Hz and detection of the temperature perturbation by ECE diagnostics is used to validate the location of the heating. This technique also determines an upper bound on the width of the deposition profile. Analysis of electron cyclotron current drive indicates that up to 0.17 MA of central current is driven, resulting in a negative loop voltage near the axis
Recommended from our members
Fast Wave Heating and Current Drive in DIII-D Discharges With Negative Central Shear
The noninductive current driven by fast Alfven waves (FWCD) has been applied to discharges in DIII-D with negative central shear. Driven currents as high as 275 kA have been achieved with up to 3 MW of fast wave power with the efficiency and profile as predicted by theory-based modeling. When counter-current FWCD was applied to discharges with negative central shear, the negative shear was strengthened and prolonged, showing that FWCD can help to control the current profile in advanced tokamak discharges. Under some conditions in negative central shear, the plasma spontaneously makes a transition into a regime of improved performance, with a reduction in both the ion and the electron heat diffusivities. Up to 3 MW of fast wave power has been successfully coupled into H-mode discharges with large edge localized modes through use of an innovative decoupler/hybrid power splitter combination
Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I
Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload
Assessment of vocal cord nodules: A case study in speech processing by using Hilbert-Huang Transform
Vocal cord nodules represent a pathological condition for which the growth of unnatural masses on vocal folds affects the patients. Among other effects, changes in the vocal cords' overall mass and stiffness alter their vibratory behaviour, thus changing the vocal emission generated by them. This causes dysphonia, i.e. abnormalities in the patients' voice, which can be analysed and inspected via audio signals. However, the evaluation of voice condition through speech processing is not a trivial task, as standard methods based on the Fourier Transform, fail to fit the non-stationary nature of vocal signals. In this study, four audio tracks, provided by a volunteer patient, whose vocal fold nodules have been surgically removed, were analysed using a relatively new technique: the Hilbert-Huang Transform (HHT) via Empirical Mode Decomposition (EMD); specifically, by using the CEEMDAN (Complete Ensemble EMD with Adaptive Noise) algorithm. This method has been applied here to speech signals, which were recorded before removal surgery and during convalescence, to investigate specific trends. Possibilities offered by the HHT are exposed, but also some limitations of decomposing the signals into so-called intrinsic mode functions (IMFs) are highlighted. The results of these preliminary studies are intended to be a basis for the development of new viable alternatives to the softwares currently used for the analysis and evaluation of pathological voice
Recommended from our members
Initial results from the multi-megawatt 110 GHz ECH system for the DIII-D tokamak
The first of three MW-level 110 GHz gyrotrons was operated into the DIII-D tokamak in late 1996. Two additional units will be commissioned during 1997. Each gyrotron is connected to the tokamak by a low loss, windowless, evacuated transmission line using circular corrugated waveguide carrying the HE{sub 11} mode. The microwave beam spot is well focused with a spot size of approximately 6 cm and can be steered poloidally from the center to the outer edge of the plasma. The initial operation with about 0.5 MW delivered to a low density plasma for 0.5 s showed good central electron heating, with peak temperature in excess of 10 keV. The injection was 19{degree} off perpendicular for current drive
- …