14 research outputs found

    Early Cortical Changes in Gamma Oscillations in Alzheimer’s Disease

    Get PDF
    The entorhinal cortices in the temporal lobe of the brain are key structures relaying memory related information between the neocortex and the hippocampus. The medial entorhinal cortex (MEC) routes spatial information, whereas the lateral entorhinal cortex (LEC) routes predominantly olfactory information to the hippocampus. Gamma oscillations are known to coordinate information transfer between brain regions by precisely timing population activity of neuronal ensembles. Here, we studied the organization of in vitro gamma oscillations in the MEC and LEC of the transgenic (tg) amyloid precursor protein (APP)-presenilin 1 (PS1) mouse model of Alzheimer’s Disease (AD) at 4–5 months of age. In vitro gamma oscillations using the kainate model peaked between 30–50 Hz and therefore we analyzed the oscillatory properties in the 20–60 Hz range. Our results indicate that the LEC shows clear alterations in frequency and power of gamma oscillations at an early stage of AD as compared to the MEC. The gamma-frequency oscillation slows down in the LEC and also the gamma power in dorsal LEC is decreased as early as 4–5 months in the tg APP-PS1 mice. The results of this study suggest that the timing of olfactory inputs from LEC to the hippocampus might be affected at an early stage of AD, resulting in a possible erroneous integration of the information carried by the two input pathways to the hippocampal subfields.Peer Reviewe

    VGLUT2 functions as a differentia marker for hippocampal output neurons

    Get PDF
    The subiculum is the gatekeeper between the hippocampus and cortical areas. Yet, the lack of a pyramidal cell-specific marker gene has made the analysis of the subicular area very difficult. Here we report that the vesicular-glutamate transporter 2 (VGLUT2) functions as a specific marker gene for subicular burst-firing neurons, and demonstrate that VGLUT2-Cre mice allow for Channelrhodopsin-2 (ChR2)-assisted connectivity analysis

    VGLUT2 Functions as a Differential Marker for Hippocampal Output Neurons

    Get PDF
    The subiculum is the gatekeeper between the hippocampus and cortical areas. Yet, the lack of a pyramidal cell-specific marker gene has made the analysis of the subicular area very difficult. Here we report that the vesicular-glutamate transporter 2 (VGLUT2) functions as a specific marker gene for subicular burst-firing neurons, and demonstrate that VGLUT2-Cre mice allow for Channelrhodopsin-2 (ChR2)-assisted connectivity analysis

    VGLUT2 functions as a differential marker for hippocampal output neurons

    Get PDF
    The subiculum is the gatekeeper between the hippocampus and cortical areas. Yet, the lack of a pyramidal cell-specific marker gene has made the analysis of the subicular area very difficult. Here we report that the vesicular-glutamate transporter 2 (VGLUT2) functions as a specific marker gene for subicular burst-firing neurons, and demonstrate that VGLUT2-Cre mice allow for Channelrhodopsin-2 (ChR2)-assisted connectivity analysis

    Layer 3 Pyramidal Cells in the Medial Entorhinal Cortex Orchestrate Up-Down States and Entrain the Deep Layers Differentially

    Get PDF
    Up-down states (UDS) are synchronous cortical events of neuronal activity during non-REM sleep. The medial entorhinal cortex (MEC) exhibits robust UDS during natural sleep and under anesthesia. However, little is known about the generation and propagation of UDS-related activity in the MEC. Here, we dissect the circuitry underlying UDS generation and propagation across layers in the MEC using both in vivo and in vitro approaches. We provide evidence that layer 3 (L3) MEC is crucial in the generation and maintenance of UDS in the MEC. Furthermore, we find that the two sublayers of the L5 MEC participate differentially during UDS. Our findings show that L5b, which receives hippocampal output, is strongly innervated by UDS activity originating in L3 MEC. Our data suggest that L5b acts as a coincidence detector during information transfer between the hippocampus and the cortex and thereby plays an important role in memory encoding and consolidation

    Mikroschaltkreise des entorhinalen Cortex

    No full text
    Neuronal microcircuits are the fundamental units of brain functions. Such microcircuits are at the interface between the elementary building blocks, namely excitatory and inhibitory neurons and functional neuronal networks. The structure of neuronal microcircuits matures over development and stabilizes in the adult. Developmental or environmental insults often result in misconnected circuits. By studying normal or misconnected neuronal microcircuits one can better understand the underlying functions in physiological or pathological (neurodegenerative diseases) conditions. In my doctoral thesis, I aimed to understand the functional microcircuitry of the entorhinal cortex, in particular the medial entorhinal cortex (mEC), in normal functions and disease. Past research has focused mainly on the anatomical circuitry of the entorhinal cortex. However, recent in vivo work has revealed the functional relevance of the entorhinal cortex as an independent computational unit serving a key role in spatial navigation and not simply an information hub between the cortex and hippocampus. The chronological gap between structural and functional studies has led to many open questions. In addition the mEC has been implicated heavily in Alzheimer’s disease, temporal lobe epilepsy (TLE), Schizophrenia and many other neuropsychiatric disorders. In chapters 1 and 2, I introduce the concept of a neuronal microcircuit and emphasize the need to understand it both at the structural and functional levels. Further, I introduce the mEC’s role in spatial navigation and pathophysiology and the importance of looking at the underlying microcircuitry which might further our understanding in these directions. In chapter 3, I discuss the available techniques for studying neuronal microcircuitry, introduce the fast-scanning photostimulation software and in depth compare its performance to the other standard techniques and software available. By mapping the intralaminar synaptic connectivity of Layer 2 stellate cells (L2S) of the mEC as a model cell, the applicability, resolution and repeatability of the software was validated. Further, the detection algorithm for distinguishing photo-induced events from background events was tested and proven to be capable of faithfully differentiating between the two kinds of photo-induced events – the direct responses and the synaptic inputs. In chapter 4, the main findings of the functional microcircuitry of the two projection neurons in the L2 mEC – Layer 2 stellate cell (L2S) and the Layer 2 pyramidal cell (L2P) – are presented. Results reveal the existence of excitatory microcircuits with a cell-type–specific separation of intralaminar recurrent connections and ascending interlaminar feedback connections as well as modular organization. L2Ss display more intralaminar recurrent connectivity; in comparison, L2Ps receive a larger fraction of the ascending interlaminar feedback connectivity from deep layers of the mEC, constituting the hippocampal feedback loop. Ascending interlaminar feedback connections to L2 are spatially organized in modules with distinct properties for the two cell types. Neuronal synchrony is an inherent property of neuronal microcircuits. Brain rhythms of different temporal frequencies, especially gamma oscillations, have been attributed important roles in binding information from several brain areas. In chapter 5, a model for studying the role of mEC microcircuitry in neuronal synchrony and excitability is assessed, the molecular mechanisms behind such synchrony and pathological consequences of hyperexcitability. From the results, we conclude that GluK2 containing kainate receptors are crucial players in the kainate- induced gamma oscillations in the superficial layers of the mEC. Layer 3 pyramidal cells (L3Ps) contain KARs that are limited to the somatodendritic region. The specific expression and distribution of GluK2 containing KARs on L3Ps might render them sensitive to seizure related insults as is often seen in animal models of TLE (eg: kainate model, pilocarpine model etc.). Since epilepsy can result from hyperexcitable neuronal networks, there are more than one way and region where and how this might occur. As an outlook, from another study that I was involved in, we propose the role of a novel mediator of synaptic transmission, PRG-1 (plasticity related gene-1) in modulating excitability in neuronal networks. PRG-1 is found exclusively at glutamatergic synapses on the postsynaptic side and modulates synaptic transmission. Genetic deletion of PRG-1 results in severe hyperexcitability (chapter 5) in the hippocampus leading to pathological seizures. Taken together these findings reveal the importance of studying the functional microcircuitry of a cortical region in normal and pathological conditions. The cell-type specific and modular organization of inputs upon the L2S and L2P further the knowledge as to how information is transferred within the local microcircuitry of the entorhinal cortex. The deep layer inputs have been implicated to be of pivotal importance for the L2 cells to perform its role in spatial navigation. Here, we provide the first direct functional evidence for the existence of such input to the L2 cells. Secondly, the characterization of the KARs on L3Ps is a step forward to understand the KAR-mediated synaptic transmission and its contribution towards neuronal synchrony and excitability in the mEC. Further, the identification of a novel mediator of excitability at the synapse, PRG-1, show a critical way in which neuronal networks are finely tuned. The balance between excitation and inhibition is needed to maintain the integrity of neuronal microcircuits. In conclusion, my doctoral thesis makes a contribution towards understanding the functional microcircuitry in the medial entorhinal cortex and answers questions explaining the role of microcircuit-forming synapses in physiological and pathophysiological conditions.Neuronale Mikroschaltkreise bilden die elementaren Einheiten von Hirnfunktionen. Solche Mikroschaltkreise verbinden die elementaren Bausteine, dh. erregende und inhibitorische Neurone zu funktionalen neuronalen Netzwerken. Die Struktur neuronaler Mikroschaltkreise reift während der Entwicklung und stabilisiert sich im adulten Organismus. Entwicklungs- oder umgebungsbedingte Beeinträchtigungen haben oft fehlerhaft verknüpfte Kreisläufe zur Folge. Die Betrachtung normaler und falsch verknüpfter Mikroschaltkreise ermöglicht das bessere Verständnis der zugrunde liegenden Funktionen unter physiologischen oder pathologischen (neuropsychiatrischen Krankheiten) Bedingungen. Das Ziel meiner Doktorarbeit ist das Verständnis des funktionalen Mikroschaltkreises des entorhinalen Cortex, ins Besondere des medialen entorhinalen Cortex (mEC), in seiner gesunden Funktion und auch im Zusammenhang mit Krankheiten. Frühere Studien konzentrierten sich hauptsächlich auf die anatomische Verschaltung des entorhinalen Cortex. Jüngste in vivo Forschungen offenbarten jedoch die funktionale Relevanz des entorhinalen Cortex als unabhängige Recheneinheit, die bei der räumlichen Orientierung eine Schlüsselrolle einnimmt und keineswegs nur als Informationsdrehkreuz zwischen Cortex und Hippocampus dient. Die zeitliche Diskrepanz zwischen strukturellen und funktionalen Studien warf viele offene Fragen auf. Desweiteren wurde der mEC in Zusammenhang mit Alzheimer, Temporallappenepilepsie (TLE), Schizophrenie und vielen anderen neuroentwicklungs- und psychiatrischen Erkrankungen gebracht. In den Kapiteln 1 und 2 leite ich das Konzept des neuronalen Mikroschaltkreises ein und gehe auf die Notwendigkeit des Verständnisses auf struktureller und funktionaler Ebene ein. Außerdem erläutere ich die Rolle des mEC bei der räumlichen Orientierung und in der Pathophysiologie, sowie die Wichtigkeit die zugrunde liegenden Mikroschaltkreise zu betrachten, welche unser Verständnis in obigen Zusammenhängen erweitern dürften. In Kapitel 3 diskutiere ich die zur Untersuchung neuronaler Mikroschaltkreise verfügbaren Techniken, stelle die schnell abtastende Photostimulationssoftware vor und vergleiche deren Leistungsvermögen mit dem anderer Standardtechniken und Softwares. Die Anwendbarkeit, Auflösung und Reproduzierbarkeit der Software wurde an Hand der Kartierung der intralaminaren synaptischen Verknüpfungen der Schicht 2 Sternzellen (L2S) des mEC als Modellzelle bestätigt. Desweiteren überprüfte ich den Detektionsalgorithmus zur Unterscheidung photo-induzierter Ereignisse von Hintergrundereignissen und bewies außerdem dessen Verlässlichkeit zwischen den beiden Arten photo-induzierter Ereignisse, direkte Antworten und synaptische Eingänge, zu differenzieren. In Kapitel 4 lege ich die Kernergebnisse bezüglich der funktionalen Mikroschaltkreise der beiden Projektionsneuronen der Schicht 2 des mEC, L2S und Schicht 2 Pyramidenzellen (L2P), dar. Meine Ergebnisse offenbaren das Vorhandensein erregender Mikroschaltkreise mit einer zelltypspezifischen Trennung zwischen intralaminaren rekurrenten Verbindungen und aufsteigenden interlaminaren Rückkopplungsverbindungen sowie eine modulare Organisation. L2S zeigen hauptsächlich intralaminare rekurrente Verknüpfungen wohingegen L2P mehrheitlich Eingang von aufsteigenden interlaminaren Rückkopplungsverbindungen aus den tiefen Schichten des mEC erhalten. Letztere bilden den hippocampalen Rückführkreis. Aufsteigende interlaminare Rückkopplungsverbindungen nach Schicht 2 sind in räumlichen Modulen organisiert welche für die beiden Zelltypen verschiedene Eigenschaften aufweisen. Neuronale Synchronität ist eine inherente Eigenschaft neuronaler Mikroschaltkreise. Hirnrythmen verschiedener zeitlicher Frequenzen, ins Besondere Gamma Oszillationen, werden wichtige Rollen beim Zusammenführen von Informationen aus verschiedenen Hirnregionen zugeschrieben. In Kapitel 5 beschäftige ich mich mit einem Modell zur Untersuchung der Rolle von mEC Mikroschaltkreisen im Zusammenhang mit neuronaler Synchronität und Erregbarkeit, den zugrunde liegenden molekularen Mechanismen dieser Synchronität und den pathologischen Folgen von Übererregbarkeit. Aus den Ergebnissen dieser Studien schlussfolgere ich, dass GluK2 enthaltende Kainatrezeptoren eine Schlüsselrolle bei durch Kainat induzierten Gammaoszillationen in den oberflächlichen Schichten des mEC einnehmen. KARs der Schicht 3 Pyramidenzellen (L3Ps) sind auf die somatodendritischen Bereiche beschränkt. Die spezielle Expression und Verteilung von GluK2 enthaltenden KARs auf L3Ps könnte sie empfänglich für mit epileptischen Anfällen in Beziehung stehende krankhafte Veränderungen machen, wie sie oft bei Tiermodellen für TLE (z.B. Kainatmodell, Pilokarpinmodell, etc.) beobachtet werden. Da sich Epilepsie aus übererregbaren neuronalen Netzwerken entwickeln kann, gibt es mehr als einen Weg wie und wo dies erfolgen kann. Als Ausblick diskutiere ich die Rolle eines neuartigen Vermittlers synaptischer Übertragung, PRG-1 (plasticity related gene-1) bei der Modulation von Erregbarkeit in neuronalen Netzwerken. Dieser wurde in einer anderen Studie, an der ich beteiligt war, untersucht. PRG-1 findet sich ausschließlich an glutamatergen Synapsen auf der postsynaptischen Seite und moduliert die synaptische Übertragung. Genetische Deletion von PRG-1 führt zu schwerer Übererregbarkeit (Kapitel 5) des Hippocampus welche in der Entstehung pathologischer Anfälle mündet. Zusammenfassend zeigen diese Erkenntnisse die Wichtigkeit funktionale Mikroschaltkreise eines cortikalen Bereichs unter normalen wie auch unter pathologischen Bedingungen zu untersuchen auf. Die zelltypspezifische und modulare Organisation von Inputs auf L2S und L2P erweitern unser Wissen darüber wie Information innerhalb eines lokalen Mikroschaltkreises des entorhinalen Cortex übermittelt wird. Den Eingängen der tiefen Schichten wird eine herausragende Rolle für L2 Zellen bei deren Funktion bei der räumlichen Orientierung zugeschrieben. Diese Arbeit zeigt die ersten funktionalen Beweise der Existenz solcher Eingänge auf L2 Zellen. Desweiteren ist die Charakterisierung der KARs auf L3Ps ein weiterer Schritt zum Verständnis KAR-vermittelter synaptischer Übertragung und deren Beitrag zu neuronaler Synchronität und Erregbarkeit im mEC. Die Identifikation eines neuartigen Mediators der Erregbarkeit von Synapsen, PRG-1, zeigt eine entscheidende Möglichkeit wie neuronale Netzwerke genau reguliert werden können. Das Gleichgewicht zwischen Erregung und Inhibition ist notwendig um die Integrität neuronaler Mikroschaltkreise zu bewahren. In ihrer Gesamtheit leistet meine Doktorarbeit einen Beitrag zum Verständnis der funktionalen Mikroschaltkreise im medialen entorhinalen Cortex und beantwortet Fragen zu dessen Rolle unter physiologischen und pathophysiologischen Bedingungen

    Do things have ethics?

    Get PDF
    This is an open hardware and open software game console developed by hackers in Belgrade. By just looking at the game console itself, you would not see the ethical thinking behind it. This is why, the values of things should be taken into account. Acknowledgements: European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No: 732027

    Species-specific differences in synaptic transmission and plasticity

    Get PDF
    Synaptic transmission and plasticity in the hippocampus are integral factors in learning and memory. While there has been intense investigation of these critical mechanisms in the brain of rodents, we lack a broader understanding of the generality of these processes across species. We investigated one of the smallest animals with conserved hippocampal macroanatomy—the Etruscan shrew, and found that while synaptic properties and plasticity in CA1 Schaffer collateral synapses were similar to mice, CA3 mossy fiber synapses showed striking differences in synaptic plasticity between shrews and mice. Shrew mossy fibers have lower long term plasticity compared to mice. Short term plasticity and the expression of a key protein involved in it, synaptotagmin 7 were also markedly lower at the mossy fibers in shrews than in mice. We also observed similar lower expression of synaptotagmin 7 in the mossy fibers of bats that are evolutionarily closer to shrews than mice. Species specific differences in synaptic plasticity and the key molecules regulating it, highlight the evolutionary divergence of neuronal circuit functions

    Publisher Correction: Propagation of hippocampal ripples to the neocortex by way of a subiculum-retrosplenial pathway

    No full text
    An amendment to this paper has been published and can be accessed via a link at the top of the paper
    corecore