8 research outputs found

    A Randomised Control Trial and Comparative Analysis of Multi-Dimensional Learning Tools in Anatomy

    Get PDF
    Research was funded by the Cakmak Lab and the University of Otago, Otago Medical School. Author notes: These authors contributed equally: Ben Kei Daniel and Mustafa Asil. Contributions: Conception and Design of Study: Y.C. and C.W.; Design of materials: Y.C. and C.W.; Randomization of participants: P.K.; Acquisition of data: C.W.; Data analysis and interpretation: Y.C., M.A., B.D. and C.W.; Drafting of manuscript and/or critical revision: C.W., Y.C., M.A., B.D. and P.K.; All authors read and approved the final manuscript.Peer reviewedPublisher PD

    Non-Contact Assessment of Swallowing Dysfunction Using Smartphone Captured Skin Displacements

    No full text
    Early and accurate dysphagia diagnosis is essential for reducing the risk of associated co-morbidities and mortalities. Barriers to current evaluation methods may alter the effectiveness of identifying at-risk patients. This preliminary study evaluates the feasibility of using iPhone X-captured videos of swallowing as a non-contact dysphagia screening tool. Video recordings of the anterior and lateral necks were captured simultaneously with videofluoroscopy in dysphagic patients. Videos were analyzed using an image registration algorithm (phase-based Savitzky–Golay gradient correlation (P-SG-GC)) to determine skin displacements over hyolaryngeal regions. Biomechanical swallowing parameters of hyolaryngeal displacement and velocity were also measured. Swallowing safety and efficiency were assessed by the Penetration Aspiration Scale (PAS), Residue Severity Ratings (RSR), and the Normalized Residue Ratio Scale (NRRS). Anterior hyoid excursion and horizontal skin displacements were strongly correlated with swallows of a 20 mL bolus (rs = 0.67). Skin displacements of the neck were moderately to very strongly correlated with scores on the PAS (rs = 0.80), NRRS (rs = 0.41–0.62), and RSR (rs = 0.33). This is the first study to utilize smartphone technology and image registration methods to produce skin displacements indicating post-swallow residual and penetration-aspiration. Enhancing screening methods provides a greater chance of detecting dysphagia, reducing the risk of negative health impacts

    Non-Contact Hand Movement Analysis for Optimal Configuration of Smart Sensors to Capture Parkinson’s Disease Hand Tremor

    No full text
    Parkinson’s disease affects millions worldwide with a large rise in expected burden over the coming decades. More easily accessible tools and techniques to diagnose and monitor Parkinson’s disease can improve the quality of life of patients. With the advent of new wearable technologies such as smart rings and watches, this is within reach. However, it is unclear what method for these new technologies may provide the best opportunity to capture the patient-specific severity. This study investigates which locations on the hand can be used to capture and monitor maximal movement/tremor severity. Using a Leap Motion device and custom-made software the volume, velocity, acceleration, and frequency of Parkinson’s (n = 55, all right-handed, majority right-sided onset) patients’ hand locations (25 joints inclusive of all fingers/thumb and the wrist) were captured simultaneously. Distal locations of the right hand, i.e., the ends of fingers and the wrist showed significant trends (p < 0.05) towards having the largest movement velocities and accelerations. The right hand, compared with the left hand, showed significantly greater volumes, velocities, and accelerations (p < 0.01). Supplementary analysis showed that the volumes, acceleration, and velocities had significant correlations (p < 0.001) with clinical MDS-UPDRS scores, indicating the potential suitability of using these metrics for monitoring disease progression. Maximal movements at the distal hand and wrist area indicate that these locations are best suited to capture hand tremor movements and monitor Parkinson’s disease

    Hand Pronation-Supination Movement as a Proxy for Remotely Monitoring Gait and Posture Stability in Parkinson's Disease

    No full text
    The Unified Parkinson's Disease Rating Scale (UPDRS) is a subjective Parkinson's Disease (PD) physician scoring/monitoring system. To date, there is no single upper limb wearable/non-contact system that can be used objectively to assess all UPDRS-III motor system subgroups (i.e., tremor (T), rigidity (R), bradykinesia (B), gait and posture (GP), and bulbar anomalies (BA)). We evaluated the use of a non-contact hand motion tracking system for potential extraction of GP information using forearm pronation-supination (P/S) motion parameters (speed, acceleration, and frequency). Twenty-four patients with idiopathic PD participated, and their UPDRS data were recorded bilaterally by physicians. Pearson's correlation, regression analyses, and Monte Carlo validation was conducted for all combinations of UPDRS subgroups versus motion parameters. In the 262,125 regression models that were trained and tested, the models within 1% of the lowest error showed that the frequency of P/S contributes to approximately one third of all models; while speed and acceleration also contribute significantly to the prediction of GP from the left-hand motion of right handed patients. In short, the P/S better indicated GP when performed with the non-dominant hand. There was also a significant negative correlation (with medium to large effect size, range: 0.3-0.58) between the P/S speed and the single BA score for both forearms and combined UPDRS score for the dominant hand. This study highlights the potential use of wearable or non-contact systems for forearm P/S to remotely monitor and predict the GP information in PD
    corecore