1,084 research outputs found
IMAGE SEGMENTATION BY USING EDGE DETECTION
In this paper, we present methods for edge segmentation of satellite images; we used seven techniques for this category; Sobel operator technique, Prewitt technique, Kiresh technique, Laplacian technique, Canny technique, Roberts technique and Edge Maximization Technique (EMT) and they are compared with one another so as to choose the best technique for edge detection segment image. These techniques applied on one satellite images to choose base guesses for segmentation or edge detection imag
Finite Element Simulation and Experimental Investigation of Friction Stir Welding of AA2219 and AA2014
In FSW, a rotating cylindrical pin tool is forced to plunge in to the plates to be welded and moved along their contact line. The tool penetrates into the work pieces. During this operation, frictional heat that is generated by contact friction between the tool and workpiece. The plasticized material is stirred by the tool and forced to “flow “ to the side and the back of the tool as the tool advantages as the temperature cools down, a solid continuous joint between the two plates is than formed. In this project work, DEFORM -3D is used to perform the finite element analysis and experimental investigation on the FSW in order to predict residual stresses, temperatures, normal stresses and distortion of the welded structures, that are induced during FSW of the given airframe structures made up of AA 2219 and AA 2014. A new technique of filling friction stir welding (FFSW) relying on a semi consumable joining tool has been developed to repair the keyhole left at the end of friction stir welding (FSW) seam. The FFSW process is able to repair the keyhole with both metallurgical and mechanical bonding characteristics and the FSW seam can be achieved without keyhole and other defects
Particle Motion and Electromagnetic Fields of Rotating Compact Gravitating Objects with Gravitomagnetic Charge
The exact solution for the electromagnetic field occuring when the
Kerr-Taub-NUT compact object is immersed (i) in an originally uniform magnetic
field aligned along the axis of axial symmetry (ii) in dipolar magnetic field
generated by current loop has been investigated. Effective potential of motion
of charged test particle around Kerr-Taub-NUT gravitational source immersed in
magnetic field with different values of external magnetic field and NUT
parameter has been also investigated. In both cases presence of NUT parameter
and magnetic field shifts stable circular orbits in the direction of the
central gravitating object. Finally we find analytical solutions of Maxwell
equations in the external background spacetime of a slowly rotating magnetized
NUT star. The star is considered isolated and in vacuum, with monopolar
configuration model for the stellar magnetic field.Comment: 18 pages, 6 figures, new results in section 2 added, section 3 is
revised, 3 references are adde
Magnetic Fields of Spherical Compact Stars in Braneworld
We study the dipolar magnetic field configuration in dependence on brane
tension and present solutions of Maxwell equations in the internal and external
background spacetime of a magnetized spherical star in a Randall-Sundrum II
type braneworld. The star is modelled as sphere consisting of perfect highly
magnetized fluid with infinite conductivity and frozen-in dipolar magnetic
field. With respect to solutions for magnetic fields found in the Schwarzschild
spacetime brane tension introduces enhancing corrections both to the interior
and the exterior magnetic field. These corrections could be relevant for the
magnetic fields of magnetized compact objects as pulsars and magnetars and may
provide the observational evidence for the brane tension through the
modification of formula for magneto-dipolar emission which gives amplification
of electromagnetic energy loss up to few orders depending on the value of the
brane tension.Comment: 11 pages, 5 figures, 1 tabl
Fulminant hepatitis in a tropical population: clinical course, cause, and early predictors of outcome
The profiles of patients with fulminant hepatic failure (FHF) from developing countries have not been reported earlier. The current study was conducted prospectively, at a single tertiary care center in India, to document the demographic and clinical characteristics, natural course, and causative profile of patients with FHF as well as to define simple prognostic markers in these patients. Four hundred twenty-three consecutive patients with FHF admitted from January 1987 to June 1993 were included in the study. Each patient's serum was tested for various hepatotropic viruses. Univariate Cox's regression for 28 variables, multivariate Cox's proportional hazard regression, stepwise logistic regression, and Kaplan-Meier survival analysis were done to identify independent predictors of outcome at admission. All patients presented with encephalopathy within 4 weeks of onset of symptoms. Hepatotropic viruses were the likely cause in most of these patients. Hepatitis A (HAV), hepatitis B (HBV), hepatitis D (HDV) viruses, and antitubercular drugs could be implicated as the cause of FHF in 1.7% (n = 7), 28% (n = 117), 3.8% (n = 16), and 4.5% (n = 19) patients, respectively. In the remaining 62% (n = 264) of patients the serological evidence of HAV, HBV, or HDV infection was lacking, and none of them had ingested hepatotoxins. FHF was presumed to be caused by non-A, non-B virus(es) infection. Sera of 50 patients from the latter group were tested for hepatitis E virus (HEV) RNA and HCV RNA. In 31 (62%), HEV could be implicated as the causative agent, and isolated HCV RNA could be detected in 7 (19%). Two hundred eighty eight (66%) patients died. Approximately 75% of those who died did so within 72 hours of hospitalisation. One quarter of the female patients with FHF were pregnant. Mortality among pregnant females, nonpregnant females, and male patients with FHF was similar (P > .1). Univariate analysis showed that age, size of the liver assessed by percussion, grade of coma, presence of clinical features of cerebral edema, presence of infection, serum bilirubin, and prothrombin time prolongation over controls at admission were related to survival (P < .01). The rapidity of onset of encephalopathy and cause of FHF did not influence the outcome. Cox's proportional hazard regression showed age ≥ 40 years, presence of cerebral edema, serum bilirubin ≥ 15 mg/dL, and prothrombin time prolongation of 25 seconds or more over controls were independent predictors of outcome. Ninety-three percent of the patients with three or more of the above prognostic markers died. The sensitivity, specificity, positive predictive value, and the negative predictive value of the presence of three or more of these prognostic factors for mortality was 93%, 80%, 86%, and 89.5%, respectively, with a diagnostic accuracy of 87.3%. We conclude that most of our patients with FHF might have been caused by hepatotropic viral infection, and non-A, non-B virus(es) seems to be the dominant hepatotropic viral infection among these patients. They presented with encephalopathy within 4 weeks of the onset of symptoms. Pregnancy, cause, and rapidity of onset of encephalopathy did not influence survival. The prognostic model developed in the current study is simple and can be performed at admission
Non-minimal coupling of photons and axions
We establish a new self-consistent system of equations accounting for a
non-minimal interaction of gravitational, electromagnetic and axion fields. The
procedure is based on a non-minimal extension of the standard
Einstein-Maxwell-axion action. The general properties of a ten-parameter family
of non-minimal linear models are discussed. We apply this theory to the models
with pp-wave symmetry and consider propagation of electromagnetic waves
non-minimally coupled to the gravitational and axion fields. We focus on exact
solutions of electrodynamic equations, which describe quasi-minimal and
non-minimal optical activity induced by the axion field. We also discuss
empirical constraints on coupling parameters from astrophysical birefringence
and polarization rotation observations.Comment: 31 pages, 2 Tables; replaced with the final version published in
Classical and Quantum Gravit
Recommended from our members
Variations in color and reflectance on the surface of asteroid (101955) Bennu
Visible-wavelength color and reflectance provide information about the geologic history of planetary surfaces. We present multispectral images (0.44 to 0.89 microns) of near-Earth asteroid (101955) Bennu. The surface has variable colors overlain on a moderately blue global terrain. Two primary boulder types are distinguishable by their reflectance and texture. Space weathering of Bennu surface materials does not simply progress from red to blue (or vice versa). Instead, freshly exposed, redder surfaces initially brighten in the near-ultraviolet (become bluer at shorter wavelengths), then brighten in the visible to near-infrared, leading to Bennu’s moderately blue average color. Craters indicate that the timescale of these color changes is ~105 years. We attribute the reflectance and color variation to a combination of primordial heterogeneity and varying exposure ages
Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides
BACKGROUND: The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. METHODOLOGY/PRINCIPAL FINDINGS: The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. CONCLUSIONS/SIGNIFICANCE: S-Ni₀.₁MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni₀.₁MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites
Localization of uPAR and MMP-9 in lipid rafts is critical for migration, invasion and angiogenesis in human breast cancer cells
<p>Abstract</p> <p>Background</p> <p>uPAR and MMP-9, which play critical roles in tumor cell invasion, migration and angiogenesis, have been shown to be associated with lipid rafts.</p> <p>Methods</p> <p>To investigate whether cholesterol could regulate uPAR and MMP-9 in breast carcinoma, we used MβCD (methyl beta cyclodextrin, which extracts cholesterol from lipid rafts) to disrupt lipid rafts and studied its effect on breast cancer cell migration, invasion, angiogenesis and signaling.</p> <p>Results</p> <p>Morphological evidence showed the association of uPAR with lipid rafts in breast carcinoma cells. MβCD treatment significantly reduced the colocalization of uPAR and MMP-9 with lipid raft markers and also significantly reduced uPAR and MMP-9 at both the protein and mRNA levels. Spheroid migration and invasion assays showed inhibition of breast carcinoma cell migration and invasion after MβCD treatment. <it>In vitro </it>angiogenesis studies showed a significant decrease in the angiogenic potential of cells pretreated with MβCD. MβCD treatment significantly reduced the levels of MMP-9 and uPAR in raft fractions of MDA-MB-231 and ZR 751 cells. Phosphorylated forms of Src, FAK, Cav, Akt and ERK were significantly inhibited upon MβCD treatment. Increased levels of soluble uPAR were observed upon MβCD treatment. Cholesterol supplementation restored uPAR expression to basal levels in breast carcinoma cell lines. Increased colocalization of uPAR with the lysosomal marker LAMP1 was observed in MβCD-treated cells when compared with untreated cells.</p> <p>Conclusion</p> <p>Taken together, our results suggest that cholesterol levels in lipid rafts are critical for the migration, invasion, and angiogenesis of breast carcinoma cells and could be a critical regulatory factor in these cancer cell processes mediated by uPAR and MMP-9.</p
- …