2,364 research outputs found

    Nanozyme-amplified lateral flow immunoassay for molecular signature detection of cardiovascular diseases

    Get PDF
    Point-of-care (PoC) devices offer the opportunity to decentralize the analysis of biomarkers in biological fluids thus providing patients with more personalized medicine. The golden standard of PoC platforms are lateral flow assays since they are low cost, quick to perform and user-friendly [1]. Here we show the use of a nanozyme-mediated signal readout on a multiplexed PoC lateral flow immunoassay for the diagnosis of cardiovascular diseases. Our aim has been to expand the application of this ultrasensitive detection method towards the development of a multiplexed PoC assay for cardiovascular-related biomarkers to support triage of myocardial injury

    Designing an information system for updating land records in Bangladesh: action design ethnographic research (ADER)

    Get PDF
    Open Access. This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Information Systems (IS) has developed through adapting, generating and applying diverse methodologies, methods, and techniques from reference disciplines. Further, Action Design Research (ADR) has recently developed as a broad research method that focuses on designing and redesigning IT and IS in organizational contexts. This paper reflects on applying ADR in a complex organizational context in a developing country. It shows that ADR requires additional lens for designing IS in such a complex organizational context. Through conducting ADR, it is seen that an ethnographic framework has potential complementarities for understanding complex contexts thereby enhancing the ADR processes. This paper argues that conducting ADR with an ethnographic approach enhances design of IS and organizational contexts. Finally, this paper aims presents a broader methodological framework, Action Design Ethnographic Research (ADER), for designing artefacts as well as IS. This is illustrated through the case of a land records updating service in Bangladesh

    Endoscopic Management of a Primary Duodenal Carcinoid Tumor

    Get PDF
    Carcinoids are rare, slow-growing tumors originating from a variety of different neuroendocrine cell types. They are identified histologically by their affinity for silver salts and by positive reactions to neuroendocrine markers such as neuron-specific enolase, synaptophysin and chromogranin. They can present with various clinical symptoms and are difficult to diagnose. We present the case of a 43-year-old woman who was referred for evaluation of anemia. Upper endoscopy showed a duodenal bulb mass around 1 cm in size. Histopathological and immunohistochemistry staining were consistent with the diagnosis of a carcinoid tumor. Further imaging and endoscopic studies showed no other synchronous carcinoid lesions. Endoscopic ultrasound (EUS) revealed a 1 cm lesion confined to the mucosa and no local lymphadenopathy. Successful endoscopic mucosal resection of the mass was performed. Follow-up surveillance 6 months later with EUS and Octreoscan revealed no new lesions suggestive of recurrence. No consensus guidelines exist for the endoscopic management of duodenal carcinoid tumors. However, endoscopic resection is safe and preferred for tumors measuring 1 cm or less with no evidence of invasion of the muscularis layer

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure

    Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone

    Get PDF
    In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy force associated with natural convection flows can exert a critical role in determining skin friction and heat transfer rates at the boundary. In thermal engineering, natural convection flows from cones has gained exceptional interest. A theoretical analysis is developed to investigate the nonlinear, steady-state, laminar, non-isothermal convection boundary layer flows of viscoelastic fluid from a vertical permeable cone with a power-law variation in both temperature and concentration. The Jeffery’s viscoelastic model simulates the non-Newtonian characteristics of polymers, which constitutes the novelty of the present work. The transformed conservation equations for linear momentum, energy and concentration are solved numerically under physically viable boundary conditions using the finite-differences Keller-Box scheme. The impact of Deborah number (De), ratio of relaxation to retardation time (λ), surface suction/injection parameter (fw), power-law exponent (n), buoyancy ratio parameter (N) and dimensionless tangential coordinate (Ѯ) on velocity, surface temperature, concentration, local skin friction, heat transfer rate and mass transfer rate in the boundary layer regime are presented graphically. It is observed that increasing values of De reduces velocity whereas the temperature and concentration are increased slightly. Increasing λ enhance velocity however reduces temperature and concentration slightly. The heat and mass transfer rate are found to decrease with increasing De and increase with increasing values of λ. The skin friction is found to decrease with a rise in De whereas it is elevated with increasing values of λ. Increasing values of fw and n, decelerates the flow and also cools the boundary layer i.e. reduces temperature and also concentration. The study is relevant to chemical engineering systems, solvent and polymeric processes

    The achievement of food and nutrition security in South Asia is deeply gendered

    Get PDF
    Women form an integral part of the agricultural sector, and in much of South Asia women make up a majority of the agricultural workforce, often compelled to work in order to meet their families’ basic needs. While their contributions are recognised as central to the food and nutrition security of households and communities, their work is not recognized or supported adequately by public policy and social institutions. Women continue to face inequality across key development indicators including health, education, and nutrition; discriminatory laws; and high levels of precarity in terms of income, employment conditions, safety and wellbeing. Social structures that promote gender inequality and inhibit the agency of women contribute to the South Asian enigma – the persistence of undernutrition despite economic growth – and must be addressed to achieve food and nutrition security

    Active microrheology and simultaneous visualization of sheared phospholipid monolayers

    Get PDF
    Two-dimensional films of surface-active agents—from phospholipids and proteins to nanoparticles and colloids—stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic properties, but allows the interfacial microstructure to be directly visualized during deformation. Here we present a novel technique that combines active microrheology with fluorescence microscopy to visualize fluid interfaces as they deform under applied stress, allowing structure and rheology to be correlated on the micron-scale in monolayer films. We show that even simple, single-component lipid monolayers can exhibit viscoelasticity, history dependence, a yield stress and hours-long time scales for elastic recoil and aging. Simultaneous visualization of the monolayer under stress shows that the rich dynamical response results from the cooperative dynamics and deformation of liquid-crystalline domains and their boundaries

    Counting and effective rigidity in algebra and geometry

    Full text link
    The purpose of this article is to produce effective versions of some rigidity results in algebra and geometry. On the geometric side, we focus on the spectrum of primitive geodesic lengths (resp., complex lengths) for arithmetic hyperbolic 2-manifolds (resp., 3-manifolds). By work of Reid, this spectrum determines the commensurability class of the 2-manifold (resp., 3-manifold). We establish effective versions of these rigidity results by ensuring that, for two incommensurable arithmetic manifolds of bounded volume, the length sets (resp., the complex length sets) must disagree for a length that can be explicitly bounded as a function of volume. We also prove an effective version of a similar rigidity result established by the second author with Reid on a surface analog of the length spectrum for hyperbolic 3-manifolds. These effective results have corresponding algebraic analogs involving maximal subfields and quaternion subalgebras of quaternion algebras. To prove these effective rigidity results, we establish results on the asymptotic behavior of certain algebraic and geometric counting functions which are of independent interest.Comment: v.2, 39 pages. To appear in Invent. Mat
    • …
    corecore