9 research outputs found

    Effect of Filler Metals on Creep Properties of 2.25Cr-1Mo Steel Weld Joints Prepared by GTAW Process

    Get PDF
    This research aims at comparing creep properties at elevated temperatures obtained on welding 2.25Cr-1Mo steel using gas tungsten arc welding (GTAW) with ER90S-G and ERNiCrMo-3 filler metals. The high temperature accelerated creep rupture test of 2.25Cr-1Mo welded samples was investigated over 139 to 315 MPa stress range at temperatures of 550 °C, 600 °C, and 650 °C. The samples were preheated at 250 °C for 0.5 hours and post-weld heat-treated at 690 °C for 1 hour. The results showed that the accelerated creep rupture lives of lower applied stress specimens were much longer than those of higher applied stress, when both welded materials were tested under same temperature conditions. The service lifetime of the welded materials can be predicted using the extrapolation of the Larson-Miller parameter. Creep surface fractures were investigated using SEM fractography that indicated the weldment fracture modes consisted of dimple ruptures and micro-voids coalescence in the fibrous matrix of the intercritical region of HAZ. Similar high-temperature creeps service lives were found in both welded materials

    The Influence of Parameters Affecting Mechanical Properties and Microstructures of Semi-Solid-Metal 7075 Aluminum Alloy by Using Friction Stir Spot Welding

    Get PDF
    This research aims to study the influence of parameters that affect the mechanical properties of semi-solid-metal 7075 aluminum alloy with friction stir spot welding process. The parameters fort this experiment such as rotation welding speed at 380, 760, 1240 and 2500 rpm and rotation welding time at 60, 90 and 120 seconds were employed respectively. The study found that the welded specimens at all the conditions can be welded very well. Moreover, friction stir spot welding process showed that the hardness in weld zone had an average value at 79.83 HV which is lower than the hardness of the base metal. The shear tensile strength of the welded specimens had the average value approximately 194.20 MPa at rotation welding speed of 1240 rpm, rotation welding time of 120 seconds and plunge of depth of 2 millimetres. The microstructure in the weld zone and thermal mechanical affected zone were deformed permanently. Therefore, friction stir spot welding process of this aluminum alloy provided good effects on mechanical properties. Statistical analysis showed that the coefficient of determination R-square was equal to 93.50 percent. This means that the variations of the experiments were controllable, such as equipment or other factors in the experiment. For the remaining, only 6.50 percent was uncontrolled factors

    Degradation of joints in ODS ferritic stainless steels

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    āļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāļĒāļ§āļšāļēāļāļ‚āļ­āļ‡āļšāļĢāļīāđ€āļ§āļ“āļāļĢāļ°āļ—āļšāļĢāđ‰āļ­āļ™āđƒāļ™āļ§āļąāļŠāļ”āļļāđ€āļŦāļĨāđ‡āļāļāļĨāđ‰āļē 3.5% āđ‚āļ„āļĢāđ€āļĄāļĩāļĒāļĄEffect of Postweld Heat Treatment on Impact Toughness at Heat Affected Zone of 3.5% Chromium Stee

    No full text
    āļšāļ—āļ„āļąāļ”āļĒāđˆāļ­āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ„āļ·āļ­ āđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļĄāļĩāļ•āđˆāļ­āļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāļĒāļ§āļšāļēāļāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļ•āđˆāļēāļ‡āđ† āđƒāļ™āļšāļĢāļīāđ€āļ§āļ“āļāļĢāļ°āļ—āļšāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ‡āļēāļ™āđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŦāļĨāđ‡āļāļāļĨāđ‰āļē 3.5% āđ‚āļ„āļĢāđ€āļĄāļĩāļĒāļĄāļ—āļĩāđˆāđƒāļŠāđ‰āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļīāļāđāļĨāļ°āļ—āļģāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļĨāļ§āļ”āđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŦāļĨāđ‡āļāļāļĨāđ‰āļēāđ‚āļ„āļĢāđ€āļĄāļĩāļĒāļĄ-āđ‚āļĄāļĨāļīāļšāļ”āļĩāļ™āļąāļĄāđ€āļāļĢāļ” AWS ER90S-B3 āđ‚āļ”āļĒāđāļšāđˆāļ‡āļ­āļ­āļāđ€āļ›āđ‡āļ™āļŠāļīāđ‰āļ™āļ‡āļēāļ™āļ—āļĩāđˆāđ„āļĄāđˆāļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđāļĨāļ°āļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļ­āļļāļ“āļŦāļ āļđāļĄāļī 690āđC āđ€āļ›āđ‡āļ™āđ€āļ§āļĨāļē 1 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļˆāļēāļāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļē āļšāļĢāļīāđ€āļ§āļ“āđ€āļ™āļ·āđ‰āļ­āđ‚āļĨāļŦāļ°āđ€āļŠāļ·āđˆāļ­āļĄāđāļĨāļ°āļšāļĢāļīāđ€āļ§āļ“āļāļĢāļ°āļ—āļšāļĢāđ‰āļ­āļ™āļ—āļĩāđˆāđ„āļĄāđˆāļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ€āļšāļ™āđ„āļ™āļ—āđŒāđāļĨāļ°āļĄāļēāđ€āļ—āļ™āđ„āļ‹āļ—āđŒāļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļžāļšāļ§āđˆāļē āļšāļĢāļīāđ€āļ§āļ“āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ€āļāļīāļ”āļāļēāļĢāđ€āļ›āļĨāļĩāđˆāļĒāļ™āđāļ›āļĨāļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ„āļ›āđ€āļ›āđ‡āļ™āđ€āļŸāļ­āļĢāđŒāđ„āļĢāļ—āđŒāđāļĨāļ°āđ€āļ—āļĄāđ€āļ›āļ­āļĢāđŒāļĄāļēāđ€āļ—āļ™āđ„āļ‹āļ—āđŒāļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ‹āļķāđˆāļ‡āļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļĨāļ”āļĨāļ‡ āđ‚āļ”āļĒāđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļĢāļ‡āļāļĢāļ°āđāļ—āļāđƒāļ™āļšāļĢāļīāđ€āļ§āļ“āļāļĢāļ°āļ—āļšāļĢāđ‰āļ­āļ™āļžāļšāļ§āđˆāļē āđ€āļĄāļ·āđˆāļ­āļ­āļļāļ“āļŦāļ āļđāļĄāļīāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđāļĢāļ‡āļāļĢāļ°āđāļ—āļāļĨāļ”āļĨāļ‡ (āļˆāļēāļāļ­āļļāļ“āļŦāļ āļđāļĄāļīāļŦāđ‰āļ­āļ‡Â Â   (25āđC) āļ–āļķāļ‡ -80āđC) āļŠāļīāđ‰āļ™āļ‡āļēāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļĄāļĩāļ„āđˆāļēāļāļēāļĢāļ”āļđāļ”āļ‹āļąāļšāļžāļĨāļąāļ‡āļ‡āļēāļ™āļĨāļ”āļĨāļ‡ (āđ€āļŠāđˆāļ™ āļˆāļēāļ 104 āļˆāļđāļĨāļĨāđŒ āđ€āļŦāļĨāļ·āļ­ 6 āļˆāļđāļĨāļĨāđŒ āđƒāļ™āļāļĢāļ“āļĩāļ‚āļ­āļ‡āļŠāļīāđ‰āļ™āļ‡āļēāļ™āļ—āļĩāđˆāļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄ) āđāļŠāļ”āļ‡āļ–āļķāļ‡āļāļēāļĢāļ—āļĩāđˆāļŠāļīāđ‰āļ™āļ‡āļēāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļĄāļĩāļŠāļĄāļšāļąāļ•āļīāļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāļĒāļ§āļšāļēāļāļĨāļ”āļĨāļ‡ āđ‚āļ”āļĒāļšāļĢāļīāđ€āļ§āļ“āļāļĢāļ°āļ—āļšāļĢāđ‰āļ­āļ™āļ—āļĩāđˆāļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āļĨāļ”āļĨāļ‡āđāļĨāļ°āļĄāļĩāļ„āđˆāļēāļ„āļ§āļēāļĄāđ€āļŦāļ™āļĩāļĒāļ§āļšāļēāļāļ—āļĩāđˆāļ”āļĩāļ‚āļķāđ‰āļ™ āđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļŠāļīāđ‰āļ™āļ‡āļēāļ™āļ—āļĩāđˆāđ„āļĄāđˆāļœāđˆāļēāļ™āļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāđ€āļāļīāļ”āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āđ€āļ—āļĄāđ€āļ›āļ­āļĢāđŒāļĄāļēāđ€āļ—āļ™āđ„āļ‹āļ—āđŒāđāļ—āļ™āļ—āļĩāđˆāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļĄāļēāđ€āļ—āļ™āđ„āļ‹āļ—āđŒ     āļ­āļąāļ™āđ€āļ›āđ‡āļ™āļœāļĨāļĄāļēāļˆāļēāļāļāļēāļĢāļ›āļĢāļąāļšāļ›āļĢāļļāļ‡āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āđāļĨāļ°āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļĨāļˆāļēāļāļāļēāļĢāđƒāļŦāđ‰āļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļŦāļĨāļąāļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄAbstractThe purpose of this investigation is to study the effect of postweld heat treatment (PWHT) on impact toughness with various temperatures at heat affected zone (HAZ) of 3.5%Cr steel by gas tungsten arc welding (GTAW) process with AWS ER90S-B3 Cr-Mo steel filler metal. The tested samples are divided into two conditions; No PWHT and PWHT at 690āđC for 1 hour. The results indicated that the microstructure of the weld metal and HAZ of No PWHT samples contained bainite and martensite, respectively. However, those of PWHT specimens transformed to ferrite and tempered martensite with lower hardness. From charpy impact test at HAZ regions, the lower the tested temperature (from 25āđC to -80āđC), the lower the impact energy of the HAZ (such as from 104 joules to 6 joules in case of the PWHT samples), which meant the impact toughness of HAZ decreased.The HAZ of the PWHT specimen exhibited lower hardness and better impact toughness compared to the No PWHT sample. This is due to this region contained tempered martensite instead of martensite structure resulting from the improvement of metallurgical and mechanical properties of the weldment from postweld heat treatment

    The Comparison of Welding Polarities on Microstructures and Wear Behaviour of Hardfacing Metal Using Submerged Arc Welding with Added Metal Powder

    Get PDF
    āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļŠāļ™āļīāļ”āļ‚āļ­āļ‡āļ‚āļąāđ‰āļ§āļāļĢāļ°āđāļŠāđ€āļŠāļ·āđˆāļ­āļĄāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļĢāļ°āđāļŠāļ•āļĢāļ‡āļ‚āļąāđ‰āļ§āļšāļ§āļ (DCEP) āļāļąāļšāļāļĢāļ°āđāļŠāļŠāļĨāļąāļš (AC) āļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āđ‚āļĨāļŦāļ§āļīāļ—āļĒāļēāđāļĨāļ°āļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļĨāļ‚āļ­āļ‡āđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡āļŠāļ™āļīāļ”āļĄāļēāļĢāđŒāđ€āļ—āļ™āđ„āļ‹āļ•āđŒāļ—āļĩāđˆāđ€āļŠāļ·āđˆāļ­āļĄāļĨāļ‡āļšāļ™āđ€āļŦāļĨāđ‡āļāļāļĨāđ‰āļēāļœāļŠāļĄāđ‚āļ„āļĢāđ€āļĄāļĩāļĒāļĄāļ•āđˆāļģ āļŠāļ āļēāļ§āļ°āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđāļšāđˆāļ‡āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡ 1 āļŠāļąāđ‰āļ™āđāļĨāļ° 3 āļŠāļąāđ‰āļ™āļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ DCEP āđāļĨāļ°āļāļĢāļ°āđāļŠ AC āļ‹āļķāđˆāļ‡āđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļĢāļĄāļ§āļīāļ˜āļĩāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ­āļēāļĢāđŒāļāđƒāļ•āđ‰āļŸāļĨāļąāļāļ‹āđŒāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđ€āļ•āļīāļĄāļœāļ‡āđ‚āļĨāļŦāļ° āļˆāļēāļāļ™āļąāđ‰āļ™āļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļēāļŠāđˆāļ§āļ™āļœāļŠāļĄāļ—āļēāļ‡āđ€āļ„āļĄāļĩ āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļĄāļŦāļ āļēāļ„ āđāļĨāļ°āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡ āļāļēāļĢāļ—āļ”āļŠāļ­āļšāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĨāļ°āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļ–āļđāļāđƒāļŠāđ‰āļŠāļģāļŦāļĢāļąāļšāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļāļĨāļ‚āļ­āļ‡āđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļĒāļąāļ‡āļĄāļĩāļāļēāļĢāļ•āļĢāļ§āļˆāļŠāļ­āļšāļĨāļąāļāļĐāļ“āļ°āļœāļīāļ§āļ—āļĩāđˆāļŠāļķāļāļŦāļĢāļ­āļ‚āļ­āļ‡āđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡āļ”āđ‰āļ§āļĒāđ€āļŠāđˆāļ™āļāļąāļ™ āļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāļžāļšāļ§āđˆāļēāđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡āļ‚āļ­āļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ AC āļĄāļĩāļ„āļ§āļēāļĄāļŦāļ™āļēāļĄāļēāļāļāļ§āđˆāļēāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ DCEP āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„āļ‚āļ­āļ‡āļ—āļļāļāļŠāļ āļēāļ§āļ°āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļĄāļēāļĢāđŒāđ€āļ—āļ™āđ„āļ‹āļ•āđŒāđāļĨāļ°āļ­āļ­āļŠāđ€āļ—āļ™āđ„āļ™āļ•āđŒ āļœāļīāļ§āļ—āļĩāđˆāđ€āļāļīāļ”āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļŠāđˆāļ§āļ™āđƒāļŦāļāđˆāđ€āļ›āđ‡āļ™āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āđāļšāļšāļāļēāļĢāļ•āļąāļ”āđāļĨāļ°āļāļēāļĢāđ„āļ– āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļžāļ­āļāđāļ‚āđ‡āļ‡āļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ AC āđ€āļāļīāļ”āļāļēāļĢāđ€āļˆāļ·āļ­āļˆāļēāļ‡āļ™āđ‰āļ­āļĒāļāļ§āđˆāļēāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ DCEP āļ—āļģāđƒāļŦāđ‰āđ‚āļĨāļŦāļ°āļžāļ­āļāđāļ‚āđ‡āļ‡āļ‚āļ­āļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ AC āļĄāļĩāđ€āļŸāļŠāļĄāļēāļĢāđŒāđ€āļ—āļ™āđ„āļ‹āļ•āđŒāļĄāļēāļāļāļ§āđˆāļē āļŠāđˆāļ‡āļœāļĨāđƒāļŦāđ‰āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĨāļ°āļ„āļ§āļēāļĄāļ•āđ‰āļēāļ™āļāļēāļĢāļŠāļķāļāļŦāļĢāļ­āļĄāļĩāļĄāļēāļāļāļ§āđˆāļē āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļžāļ­āļāđāļ‚āđ‡āļ‡āļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ AC āļˆāļķāļ‡āđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļ§āđˆāļēāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ”āđ‰āļ§āļĒāļāļĢāļ°āđāļŠ DCEPThe objective of this research is to compare the types of welding polarities between direct current electrode positive (DCEP) and alternating current (AC) that affect the metallurgical and mechanical properties of martensitic weld deposits onto a low chromium alloy steel. The welding conditions can be divided into 1 layer and 3 layers using DCEP and AC welded by submerge arc welding with metal powder addition. Then, the chemical composition, macrostructure, and microstructure of the deposited layers were studied. Hardness and wear testing for mechanical properties and worn surface characteristics of the hardfaced deposits were examined as well. The results showed that the deposited layer using AC polarity was thicker than that using DECP polarity. The microstructure of the deposited layer for all welding conditions consisted of martensite and austenite. The worn mechanisms of the hardfaced surfaces were mainly cutting and plowing. Hardfacing with AC polarity led to less dilution than that with DCEP polarity. As a result, the deposited microstructure using AC polarity contained higher martensite phase resulting in higher hardness and wear resistance. Therefore, AC polarity is more suitable for hardfacing application than DCEP polarity.

    Microstructural and mechanical properties of welded SSM356-T6 and SSM7075-T6 aluminum semi-solid sheets by friction stir welding

    No full text
    Friction Stir Welding (FSW) was the welding process applied in this research to join different grades of aluminum alloy sheets Semi-Solid Metal (SSM) 356-T6 and 7075-T6. The test pieces have dimensions of 50 mm × 100 mm × 4 mm. The effect of tool rotational speed on metallurgy, and mechanical properties of welding was investigated. Dissimilar butt joints were produced by using cylindrical pin with conditions of different tool rotation speed (710, 1,000 and 1,400 rpm) and welding speed (80, 112 and 160 mm/min). The welding microstructures showed three different areas including base metal, stir zone and thermo mechanical affected zone, which were directly affected by the rotation speed of tool. The butt joint rotation speeds 1,000 rpm provided the average maximum tensile strength 246.33 MPa. Rotational speed allowed material flow from the from to the rear of the tool. The heat generated from friction lead to microstructural change and promote good mix and adhesion of both materials

    āļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ•āđˆāļ­āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āļĢāļ­āļĒāļ•āđˆāļ­āļŠāļ™āļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āđ€āļāļĢāļ” 2024Influence of Friction Stir Welding Parameters on Tensile Strength of Semi-solid Cast 2024 Aluminum Alloy Butt Joints

    No full text
    āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āđ€āļ›āđ‡āļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđāļšāļšāđ„āļĄāđˆāļŦāļĨāļ­āļĄāļĨāļ°āļĨāļēāļĒāļ‹āļķāđˆāļ‡āđƒāļŦāđ‰āļ„āļļāļ“āļ āļēāļžāļĢāļ­āļĒāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļ”āļĩ āđ‚āļ”āļĒāđ€āļ‰āļžāļēāļ°āļŠāļģāļŦāļĢāļąāļšāļ§āļąāļŠāļ”āļļāļ—āļĩāđˆāđ€āļŠāļ·āđˆāļ­āļĄāđ„āļ”āđ‰āļĒāļēāļāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļŦāļĨāļ­āļĄāļĨāļ°āļĨāļēāļĒ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āđƒāļ™āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ™āļąāđ‰āļ™āļˆāļģāđ€āļ›āđ‡āļ™āļ•āđ‰āļ­āļ‡āļ•āļąāđ‰āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđƒāļŦāđ‰āđ€āļŦāļĄāļēāļ°āļŠāļĄāđ€āļžāļ·āđˆāļ­āđƒāļŦāđ‰āđ„āļ”āđ‰āļĢāļ­āļĒāđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆāļ”āļĩ āļ›āļĢāļ°āļāļ­āļšāļāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļēāđ€āļĢāļ·āđˆāļ­āļ‡āļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāļ§āļąāļŠāļ”āļļāļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡āļĒāļąāļ‡āļĄāļĩāļˆāļģāļ™āļ§āļ™āļ™āđ‰āļ­āļĒ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļˆāļķāļ‡āļĄāļĩāļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāđ€āļžāļ·āđˆāļ­āļĻāļķāļāļĐāļēāļœāļĨāļāļĢāļ°āļ—āļšāļ‚āļ­āļ‡āļžāļēāļĢāļēāļĄāļīāđ€āļ•āļ­āļĢāđŒāļāļēāļĢāđ€āļŠāļ·āđˆāļ­āļĄāđ€āļŠāļĩāļĒāļ”āļ—āļēāļ™āđāļšāļšāļāļ§āļ™āļ•āļ­āđˆ āđ‚āļ„āļĢāļ‡āļŠāļĢāđ‰āļēāļ‡āļˆāļļāļĨāļ āļēāļ„ āđāļĨāļ°āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āđāļ™āļ§āđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āļŠāļ™āļ§āļąāļŠāļ”āļļāļ­āļ°āļĨāļđāļĄāļīāđ€āļ™āļĩāļĒāļĄāļœāļŠāļĄāļŦāļĨāđˆāļ­āļāļķāđˆāļ‡āļ‚āļ­āļ‡āđāļ‚āđ‡āļ‡ 2024 āļ”āđ‰āļ§āļĒāđ€āļ—āļ„āļ™āļīāļ„āļ­āļ­āļāđāļšāļšāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļšāļšāđāļŸāļāļ—āļ­āđ€āļĢāļĩāļĒāļĨāđ€āļ•āđ‡āļĄāļˆāļģāļ™āļ§āļ™āđ‚āļ”āļĒāļāļģāļŦāļ™āļ”āļ›āļąāļˆāļˆāļąāļĒāđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡ 3 āļ›āļąāļˆāļˆāļąāļĒ āđ„āļ”āđ‰āđāļāđˆ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™āļ—āļĩāđˆ 530 āđāļĨāļ° 790 āļĢāļ­āļšāļ•āđˆāļ­āļ™āļēāļ—āļĩ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļ—āļĩāđˆ 22 āđāļĨāļ° 36 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđāļĨāļ°āļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™ āđāļšāļšāļ—āļĢāļ‡āļāļĢāļ§āļĒ āļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļĢāļĩāļĒāļš āđāļĨāļ°āļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļāļĨāļĩāļĒāļ§āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļžāļšāļ§āđˆāļē āļœāļĨāļāļĢāļ°āļ—āļšāļŦāļĨāļąāļāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āđˆāļēāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ” āļ„āļ·āļ­ āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™ āđāļĨāļ°āļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™āļ•āļēāļĄāļĨāļģāļ”āļąāļš āļ—āļĩāđˆāļĢāļ°āļ”āļąāļšāļ™āļąāļĒāļŠāļģāļ„āļąāļ 95% āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄāđƒāļ™āļŠāđˆāļ§āļ‡āļĢāļ°āļ”āļąāļšāļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĻāļķāļāļĐāļēāđ„āļĄāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļ āđ‚āļ”āļĒāļĢāļđāļ›āļ—āļĢāļ‡āļ‚āļ­āļ‡āļŦāļąāļ§āļāļ§āļ™āđāļšāļšāļ—āļĢāļ‡āļāļĢāļ°āļšāļ­āļāđ€āļĢāļĩāļĒāļš āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āļĢāļ­āļšāđƒāļ™āļāļēāļĢāļŦāļĄāļļāļ™āļāļ§āļ™ 530 āļĢāļ­āļšāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđāļĨāļ°āļ„āļ§āļēāļĄāđ€āļĢāđ‡āļ§āđ€āļ”āļīāļ™āđ€āļŠāļ·āđˆāļ­āļĄ 36 āļĄāļīāļĨāļĨāļīāđ€āļĄāļ•āļĢāļ•āđˆāļ­āļ™āļēāļ—āļĩ āđƒāļŦāđ‰āļ„āđˆāļēāđ€āļ‰āļĨāļĩāđˆāļĒāļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļŠāļđāļ‡āļŠāļļāļ” 212 āđ€āļĄāļāļ°āļ›āļēāļŠāļ„āļēāļĨ āļ„āļīāļ”āđ€āļ›āđ‡āļ™āļ„āļ§āļēāļĄāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ”āļķāļ‡āļ‚āļ­āļ‡āļ‡āļēāļ™āđ€āļŠāļ·āđˆāļ­āļĄāļ•āđˆāļ­āđ€āļ™āļ·āđ‰āļ­āļ§āļąāļŠāļ”āļļāđ€āļ”āļīāļĄāđ€āļ—āđˆāļēāļāļąāļš 99%Friction stir welding is one of solid state welding techniques which provide good weld joint compared with fusion welding techniques, especially for difficult-to-fusion welded materials. However, appropriate welding parameters were necessary to achieve good weld joints with friction stir welding. Moreover, there are a few reports on welding of semi-solid aluminum. The aims of this study are to investigate the influence of friction stir welding parameters on the microstructure and tensile strength of friction stir welding of butt joints between Semi-solid cast aluminum alloy 2024. A full factorial design technique was employed with 3 parameters, consisting of the rotation speed, welding speed and shape of stir head (cone, cylindrical and thread). Based on statistical results, it was found that the rotational speed and the shape of stir head parameters had an influence on microstructure and tensile strength of a welded joint, while welding speed was not a significant parameter at the 95% significance level. It was indicated that a cylindrical stir head at a rotational speed of 790 rpm and 36 mm/min welding speed yielded the highest tensile strength of 212 MPa, accounting for 99% of based material tensile strength
    corecore