240 research outputs found

    Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET

    Get PDF
    We report the synthesis of highly luminescent, water soluble quantum clusters (QCs) of gold, which are stabilized by an iron binding transferrin family protein, lactoferrin (Lf). The synthesized AuQC@Lf clusters were characterized using UV-Visible spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), photoluminescence (PL), matrix assisted laser desorption ionization mass spectrometry (MALDI-MS), FTIR spectroscopy and circular dichroism (CD) spectroscopy along with picosecond-resolved lifetime measurements. Detailed investigations with FTIR and CD spectroscopy have revealed changes in the secondary structure of the protein in the cluster. We have also studied Forster resonance energy transfer (FRET) occurring between the protein and the cluster. The ability of the clusters to sense cupric ions selectively at ppm concentrations was tested. The stability of clusters in widely varying pH conditions and their continued luminescence make it feasible for them to be used for intracellular imaging and molecular delivery, particularly in view of Lf protection

    Impact of modular mitochondrial epistatic interactions on the evolution of human subpopulations

    Get PDF
    Investigation of human mitochondrial (mt) genome variation has been shown to provide insights to the human history and natural selection. By analyzing 24,167 human mt-genome samples, collected for five continents, we have developed a co-mutation network model to investigate characteristic human evolutionary patterns. The analysis highlighted richer co-mutating regions of the mt-genome, suggesting the presence of epistasis. Specifically, a large portion of COX genes was found to co-mutate in Asian and American populations, whereas, in African, European, and Oceanic populations, there was greater co-mutation bias in hypervariable regions. Interestingly, this study demonstrated hierarchical modularity as a crucial agent for these co-mutation networks. More profoundly, our ancestry-based co-mutation module analyses showed that mutations cluster preferentially in known mitochondrial haplogroups. Contemporary human mt-genome nucleotides most closely resembled the ancestral state, and very few of them were found to be ancestral-variants. Overall, these results demonstrated that subpopulation-based biases may favor mitochondrial gene specific epistasis

    ISOLATION AND CHARACTERIZATION STUDIES OF MUCILAGE OBTAINED FROM TRIGONELLA FOENUM GREACUM L. SEED AND TAMARINDUS INDICA POLYSACCHARIDE AS A PHARMACEUTICAL EXCIPIENT

    Get PDF
    Now-a-days natural or herbal products are more often used in comparison to synthetic products because of its low toxicity, biodegradability, biocompatibility and its cheaper cost. The main aim of this study is to isolate and characterize mucilage obtained from Trigonella foenum graecum L. seed and Tamarindus indica polysaccharide as pharmaceutical excipients. Both isolated mucilages are extracted by different methods i.e., hot water extraction method and reflux method respectively. Ethyl alcohol is used in the isolation of mucilages. Solubility behaviour of isolated mucilages with different solvents was also studied. Different phytochemical characterization of isolated mucilages were studied like bulk and tapped densities, compressibility index, hausner’s ratio and swelling index etc. and some identification tests were also carried out for presence of carbohydrate, fats, oils etc. keywords: Methi, tamarind, extraction, mucilage, excipient

    Razvoj i biofarmaceutsko vrednovanje pripravka za povećano oslobađanje tramadol hidroklorida na principu osmotske tehnologije

    Get PDF
    Extended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve the same. Formulation variables like level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect the drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media. In vivo study was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax, tmax, AUC0-24, MRT) and relative bioavailability were calculated. The in vitro and in vivo results were compared with performance of two commercial tablets of TRH. The developed formulation provided more prolonged and controlled TRH release as compared to marketed formulation. In vitro-in vivo correlation (IVIVC) was analyzed according to Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R = 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable during 6 months of accelerated stability testing.U radu je opisana priprava i evaluacija pripravaka tramadol hidroklorida (TRH) na principu osmotske tehnologije. Da bi se postigao željeni profil oslobađanja mijenjane su različite varijable. Pokazalo se da najveći utjacaj na oslobađanje ljekovite tvari imaju udjeli polimera koji bubri, plastifikatora i debljina ovojnice polupropusne membrane (SPM). TRH oslobađanje bilo je proporcionalno udjelu plastifikatora, a obrnuto proporcionalno udjelu polimera i vrijednosti SPM. Oslobađanje ljekovite tvari bilo je neovisno o pH i intenzitetu miješanja, a ovisno o osmotskom talku medija. U in vivo studiji provedenoj na šest zdravih volontera određeni su farmakokinetički parametri (cmax, tmax, AUC0-24, MRT) i izračunata relativna bioraspoloživost. Rezultati dobiveni u pokusima in vitro i in vivo uspoređeni su s dvije vrste komercijalno dostupnih tableta TRH: oslobađanje ljekovite tvari iz pripravka razvijenog u ovom radu bilo je dulje i više kontrolirano. In vitro-in vivo korelacija (IVIVC) je analizirana prema Wagner-Nelsonovoj metodi. Optimizirani pripravak (IVB) pokazao je dobru IVIV korelaciju (R = 0,9750). Proizvodni proces je bio reproducibilan i pripravci su bili stabilni tijekom 6 mjeseci u uvjetima ubrzanog starenja

    Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India

    Get PDF
    Predicting the distribution of future climatically suitable habitat areas is crucial for the long-term success of species conservation and management plans. However, generating accurate predictions may be difficult as the assumptions and variables used in the construction of different climate scenarios may result in divergent trajectories of change. Nevertheless, generating species distribution models under multiple scenarios is helpful in selecting an optimal solution for practical applications. In this study, we compare the current distribution of climatically suitable areas of a threatened medicinally important tree, Boswellia serrata Roxb. in India with its distribution in the year 2050 modeled using two climate change scenarios - IPSL-CM5A-LR and NIMR-HADGEM2-AO - each represented by four representative concentration pathways (RCPs). Maximum entropy modeling with 19 bioclimatic variables was used to construct the climatic niche of B. serrata for predictions of present and future climatically suitable areas within India. The study revealed that annual mean temperature, mean temperature of wettest quarter and driest quarter, precipitation seasonality, and precipitation of wettest quarter potentially influence the distribution of the species. After thresholding, the model showed that ∼21.95% of the geographical area in India is presently climatically suitable for the species. The IPSL-CM5A-LR and NIMR-HADGEM2-AO climate models revealed contrasting distribution scenarios of climatically suitable areas in India. However, irrespective of these climate models, the four RCPs predict a consistent decrease in suitable area with increases in climatic harshness. Substantial area in peninsular India is expected to lose climatic suitability in 2050, though new areas are also predicted to become climatically suitable. We suggest long-term conservation strategies for B. serrata be prioritized within future areas that are projected to retain climatic suitability

    Maternal and fetal factors associated with stillbirth in singleton pregnancies in 13 hospitals across six states in India: a prospective cohort study

    Get PDF
    Methods: We conducted a secondary data analysis of a hospital-based cohort from the Maternal and Perinatal Health Research collaboration, India (MaatHRI), including pregnant women who gave birth between October 2018–September 2023. Data from 9823 singleton pregnancies recruited from 13 hospitals across six Indian states were included. Univariable and multivariable Poisson regression analysis were performed to examine the relationship between stillbirth and potential risk factors. Model prediction was assessed using the area under the receiver-operating characteristic (AUROC) curve. Results: There were 216 stillbirths (48 antepartum and 168 intrapartum) in the study population, representing an overall stillbirth rate of 22.0 per 1000 total births (95% confidence interval [CI]: 19.2–25.1). Modifiable risk factors for stillbirth were: receiving less than four antenatal check-ups (adjusted relative risk [aRR]: 1.75, 95% CI: 1.25–2.47), not taking any iron and folic acid supplementation during pregnancy (aRR: 7.23, 95% CI: 2.12–45.33) and having severe anemia in the third trimester (aRR: 3.37, 95% CI: 1.97–6.11). Having pregnancy/fetal complications such as hypertensive disorders of pregnancy (aRR: 1.59, 95% CI: 1.03–2.36), preterm birth (aRR: 4.41, 95% CI: 3.21–6.08) and birth weight below the 10th percentile for gestational age (aRR: 1.35, 95% CI: 1.02–1.79) were also associated with an increased risk of stillbirth. Identified risk factors explained 78.2% (95% CI: 75.0%–81.4%) of the risk of stillbirth in the population. Conclusion: Addressing potentially modifiable antenatal factors could reduce the risk of stillbirths in India

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Test beam performance of a CBC3-based mini-module for the Phase-2 CMS Outer Tracker before and after neutron irradiation

    Get PDF
    The Large Hadron Collider (LHC) at CERN will undergo major upgrades to increase the instantaneous luminosity up to 5–7.5×1034^{34} cm2^{-2}s1^{-1}. This High Luminosity upgrade of the LHC (HL-LHC) will deliver a total of 3000–4000 fb-1 of proton-proton collisions at a center-of-mass energy of 13–14 TeV. To cope with these challenging environmental conditions, the strip tracker of the CMS experiment will be upgraded using modules with two closely-spaced silicon sensors to provide information to include tracking in the Level-1 trigger selection. This paper describes the performance, in a test beam experiment, of the first prototype module based on the final version of the CMS Binary Chip front-end ASIC before and after the module was irradiated with neutrons. Results demonstrate that the prototype module satisfies the requirements, providing efficient tracking information, after being irradiated with a total fluence comparable to the one expected through the lifetime of the experiment
    corecore