24 research outputs found

    Magnetic resonance in porous media: Recent progress

    Get PDF
    Recent years have seen significant progress in the NMR study of porous media from natural and industrial sources and of cultural significance such as paintings. This paper provides a brief outline of the recent technical development of NMR in this area. These advances are relevant for broad NMR applications in material characterization.open283

    Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare Phenomenon?

    Get PDF
    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8), followed by A. citrinoterreus (8.4), A. hortai (2.6), A. alabamensis (1.6), A. neoafricanus (0.2), and A. floccosus (0.2). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4 of all tested isolates, 6.2 of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0 in the Czech Republic, Greece, and Turkey to 13.7 in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4 of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10, resistance against voriconazole was rare and absent for itraconazole. © 2018 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Lass-Flörl and Lackner

    Corrigendum: Azole-resistance in aspergillus terreusand related species: An emerging problem or a rare phenomenon? (Frontiers in Microbiology (2018) 9 (516) DOI: 10.3389/fmicb.2018.00516)

    Get PDF
    Raquel Sabino was not included as an author in the published article. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated. © 2019 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Lo Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Sabino, Lass-Flörl and Lackner

    Azole-resistance in Aspergillus terreus and related species: An emerging problem or a rare Phenomenon?

    Get PDF
    Objectives: Invasive mold infections associated with Aspergillus species are a significant cause of mortality in immunocompromised patients. The most frequently occurring aetiological pathogens are members of the Aspergillus section Fumigati followed by members of the section Terrei. The frequency of Aspergillus terreus and related (cryptic) species in clinical specimens, as well as the percentage of azole-resistant strains remains to be studied. Methods: A global set (n = 498) of A. terreus and phenotypically related isolates was molecularly identified (beta-tubulin), tested for antifungal susceptibility against posaconazole, voriconazole, and itraconazole, and resistant phenotypes were correlated with point mutations in the cyp51A gene. Results: The majority of isolates was identified as A. terreus (86.8), followed by A. citrinoterreus (8.4), A. hortai (2.6), A. alabamensis (1.6), A. neoafricanus (0.2), and A. floccosus (0.2). One isolate failed to match a known Aspergillus sp., but was found most closely related to A. alabamensis. According to EUCAST clinical breakpoints azole resistance was detected in 5.4 of all tested isolates, 6.2 of A. terreus sensu stricto (s.s.) were posaconazole-resistant. Posaconazole resistance differed geographically and ranged from 0 in the Czech Republic, Greece, and Turkey to 13.7 in Germany. In contrast, azole resistance among cryptic species was rare 2 out of 66 isolates and was observed only in one A. citrinoterreus and one A. alabamensis isolate. The most affected amino acid position of the Cyp51A gene correlating with the posaconazole resistant phenotype was M217, which was found in the variation M217T and M217V. Conclusions: Aspergillus terreus was most prevalent, followed by A. citrinoterreus. Posaconazole was the most potent drug against A. terreus, but 5.4 of A. terreus sensu stricto showed resistance against this azole. In Austria, Germany, and the United Kingdom posaconazole-resistance in all A. terreus isolates was higher than 10, resistance against voriconazole was rare and absent for itraconazole. © 2018 Zoran, Sartori, Sappl, Aigner, Sánchez-Reus, Rezusta, Chowdhary, Taj-Aldeen, Arendrup, Oliveri, Kontoyiannis, Alastruey-Izquierdo, Lagrou, Cascio, Meis, Buzina, Farina, Drogari-Apiranthitou, Grancini, Tortorano, Willinger, Hamprecht, Johnson, Klingspor, Arsic-Arsenijevic, Cornely, Meletiadis, Prammer, Tullio, Vehreschild, Trovato, Lewis, Segal, Rath, Hamal, Rodriguez-Iglesias, Roilides, Arikan-Akdagli, Chakrabarti, Colombo, Fernández, Martin-Gomez, Badali, Petrikkos, Klimko, Heimann, Uzun, Roudbary, de la Fuente, Houbraken, Risslegger, Lass-Flörl and Lackner
    corecore