798 research outputs found

    Overexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus

    Get PDF
    Serine hydroxymethyltransferase (SHMT), a pyridoxal-5′-phosphate (PLP) dependent enzyme catalyzes the interconversion of L-Ser and Gly using tetrahydrofolate as a substrate. The gene encoding for SHMT was amplified by PCR from genomic DNA of Bacillus stearothermophilus and the PCR product was cloned and overexpressed in Escherichia coli. The purified recombinant enzyme was isolated as a mixture of dimer (90%) and tetramer (10%). This is the first report demonstrating the existence of SHMT as a dimer and tetramer in the same organism. The specific activities at 37°C of the dimeric and tetrameric forms were 6.7 U/mg and 4.1 U/mg, respectively. The purified dimer was extremely thermostable with a Tm of 85°C in the presence of PLP and L-Ser. The temperature optimum of the dimer was 80°C with a specific activity of 32×4 U/mg at this temperature. The enzyme catalyzed tetrahydrofolate-independent reactions at a slower rate compared to the tetrahydrofolate-dependent retro-aldol cleavage of L-Ser. The interaction with substrates and their analogues indicated that the orientation of PLP ring of B. stearothermophilus SHMT was probably different from sheep liver cytosolic recombinant SHMT (scSHMT)

    Importance of tyrosine residues of Bacillus stearothermophilus serine hydroxymethyltransferase in cofactor binding and L-allo-Thr cleavage

    Get PDF
    Serine hydroxymethyltransferase (SHMT) from Bacillus stearothermophilus (bsSHMT) is a pyridoxal 5′-phosphate-dependent enzyme that catalyses the conversion of L-serine and tetrahydrofolate to glycine and 5,10-methylene tetrahydrofolate. In addition, the enzyme catalyses the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids and transamination. In this article, we have examined the mechanism of the tetrahydrofolate-independent cleavage of 3-hydroxy amino acids by SHMT. The three-dimensional structure and biochemical properties of Y51F and Y61A bsSHMTs and their complexes with substrates, especially L-allo-Thr, show that the cleavage of 3-hydroxy amino acids could proceed via Cα proton abstraction rather than hydroxyl proton removal. Both mutations result in a complete loss of tetrahydrofolate-dependent and tetrahydrofolate-independent activities. The mutation of Y51 to F strongly affects the binding of pyridoxal 5′-phosphate, possibly as a consequence of a change in the orientation of the phenyl ring in Y51F bsSHMT. The mutant enzyme could be completely reconstituted with pyridoxal 5′-phosphate. However, there was an alteration in the λmax value of the internal aldimine (396 nm), a decrease in the rate of reduction with NaCNBH3 and a loss of the intermediate in the interaction with methoxyamine (MA). The mutation of Y61 to A results in the loss of interaction with Cα and Cβ of the substrates. X-Ray structure and visible CD studies show that the mutant is capable of forming an external aldimine. However, the formation of the quinonoid intermediate is hindered. It is suggested that Y61 is involved in the abstraction of the Cα proton from 3-hydroxy amino acids. A new mechanism for the cleavage of 3-hydroxy amino acids via Cα proton abstraction by SHMT is proposed

    Community mobilisation and empowerment of female sex workers is significantly associated with reduced HIV/STI risk in Karnataka state, south India

    Get PDF
    What is the impact of community mobilisation as a central component of targeted HIV prevention programmes in India? Research implemented by KHPT and presented in a poster by Tara Beattie, demonstrates how community mobilisation activities built the capacity of female sex workers to manage their vulnerability to HIV. Results showed: Increased levels of collective and individual power, Increased knowledge and uptake of HIV and STI services, Increased condom use with clients and regular partners. This presentation was part of research presented at AIDS 2012 by STRIVE's host group, Social and Mathematical Epidemiology (SaME), LSHTM

    Chitin Binding Proteins Act Synergistically with Chitinases in Serratia proteamaculans 568

    Get PDF
    Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥0.2 µM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues

    TCF7L2 gene polymorphisms do not predict susceptibility to diabetes in tropical calcific pancreatitis but may interact with SPINK1 and CTSB mutations in predicting diabetes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tropical calcific pancreatitis (TCP) is a type of chronic pancreatitis unique to developing countries in tropical regions and one of its important features is invariable progression to diabetes, a condition called fibro-calculous pancreatic diabetes (FCPD), but the nature of diabetes in TCP is controversial. We analysed the recently reported type 2 diabetes (T2D) associated polymorphisms in the <it>TCF7L2 </it>gene using a case-control approach, under the hypothesis that <it>TCF7L2 </it>variants should show similar association if diabetes in FCPD is similar to T2D. We also investigated the interaction between the <it>TCF7L2 </it>variants and N34S <it>SPINK1 </it>and L26V <it>CTSB </it>mutations, since they are strong predictors of risk for TCP.</p> <p>Methods</p> <p>Two polymorphisms rs7903146 and rs12255372 in the <it>TCF7L2 </it>gene were analyzed by direct sequencing in 478 well-characterized TCP patients and 661 healthy controls of Dravidian and Indo-European ethnicities. Their association with TCP with diabetes (FCPD) and without diabetes was tested in both populations independently using chi-square test. Finally, a meta analysis was performed on all the cases and controls for assessing the overall significance irrespective of ethnicity. We dichotomized the whole cohort based on the presence or absence of N34S <it>SPINK1 </it>and L26V <it>CTSB </it>mutations and further subdivided them into TCP and FCPD patients and compared the distribution of <it>TCF7L2 </it>variants between them.</p> <p>Results</p> <p>The allelic and genotypic frequencies for both <it>TCF7L2 </it>polymorphisms, did not differ significantly between TCP patients and controls belonging to either of the ethnic groups or taken together. No statistically significant association of the SNPs was observed with TCP or FCPD or between carriers and non-carriers of N34S <it>SPINK1 </it>and L26V <it>CTSB </it>mutations. The minor allele frequency for rs7903146 was different between TCP and FCPD patients carrying the N34S <it>SPINK1 </it>variant but did not reach statistical significance (OR = 1.59, 95% CI = 0.93–2.70, P = 0.09), while, <it>TCF7L2</it><it/>variant showed a statistically significant association between TCP and FCPD patients carrying the 26V allele (OR = 1.69, 95% CI = 1.11–2.56, P = 0.013).</p> <p>Conclusion</p> <p>Type 2 diabetes associated <it>TCF7L2 </it>variants are not associated with diabetes in TCP. Since, <it>TCF7L2 </it>is a major susceptibility gene for T2D, it may be hypothesized that the diabetes in TCP patients may not be similar to T2D. Our data also suggests that co-existence of <it>TCF7L2 </it>variants and the <it>SPINK1 </it>and <it>CTSB </it>mutations, that predict susceptibility to exocrine damage, may interact to determine the onset of diabetes in TCP patients.</p

    A systematic review of population health interventions and Scheduled Tribes in India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite India's recent economic growth, health and human development indicators of Scheduled Tribes (ST) or <it>Adivasi </it>(India's indigenous populations) lag behind national averages. The aim of this review was to identify the public health interventions or components of these interventions that are effective in reducing morbidity or mortality rates and reducing risks of ill health among ST populations in India, in order to inform policy and to identify important research gaps.</p> <p>Methods</p> <p>We systematically searched and assessed peer-reviewed literature on evaluations or intervention studies of a population health intervention undertaken with an ST population or in a tribal area, with a population health outcome(s), and involving primary data collection.</p> <p>Results</p> <p>The evidence compiled in this review revealed three issues that promote effective public health interventions with STs: (1) to develop and implement interventions that are low-cost, give rapid results and can be easily administered, (2): a multi-pronged approach, and (3): involve ST populations in the intervention.</p> <p>Conclusion</p> <p>While there is a growing body of knowledge on the health needs of STs, there is a paucity of data on how we can address these needs. We provide suggestions on how to undertake future population health intervention research with ST populations and offer priority research avenues that will help to address our knowledge gap in this area.</p

    Gene Expression Profile of Neuronal Progenitor Cells Derived from hESCs: Activation of Chromosome 11p15.5 and Comparison to Human Dopaminergic Neurons

    Get PDF
    BACKGROUND: We initiated differentiation of human embryonic stem cells (hESCs) into dopamine neurons, obtained a purified population of neuronal precursor cells by cell sorting, and determined patterns of gene transcription. METHODOLOGY: Dopaminergic differentiation of hESCs was initiated by culturing hESCs with a feeder layer of PA6 cells. Differentiating cells were then sorted to obtain a pure population of PSA-NCAM-expressing neuronal precursors, which were then analyzed for gene expression using Massive Parallel Signature Sequencing (MPSS). Individual genes as well as regions of the genome which were activated were determined. PRINCIPAL FINDINGS: A number of genes known to be involved in the specification of dopaminergic neurons, including MSX1, CDKN1C, Pitx1 and Pitx2, as well as several novel genes not previously associated with dopaminergic differentiation, were expressed. Notably, we found that a specific region of the genome located on chromosome 11p15.5 was highly activated. This region contains several genes which have previously been associated with the function of dopaminergic neurons, including the gene for tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, IGF2, and CDKN1C, which cooperates with Nurr1 in directing the differentiation of dopaminergic neurons. Other genes in this region not previously recognized as being involved in the functions of dopaminergic neurons were also activated, including H19, TSSC4, and HBG2. IGF2 and CDKN1C were also found to be highly expressed in mature human TH-positive dopamine neurons isolated from human brain samples by laser capture. CONCLUSIONS: The present data suggest that the H19-IGF2 imprinting region on chromosome 11p15.5 is involved in the process through which undifferentiated cells are specified to become neuronal precursors and/or dopaminergic neurons
    corecore