351 research outputs found

    Preoperative evaluation of pulmonary artery morphology and pulmonary circulation in neonates with pulmonary atresia - usefulness of MR angiography in clinical routine

    Get PDF
    BACKGROUND: To explore the role of contrast-enhanced magnetic resonance angiography (CE-MRA) in clinical routine for evaluating neonates with pulmonary atresia (PA) and to describe their pulmonary artery morphology and blood supply.CE-MRA studies of 15 neonates with PA (12 female; median weight: 2900 g) were retrospectively evaluated by two radiologists in consensus. Each study was judged to be either diagnostic or non-diagnostic depending on the potential to evaluate pulmonary artery morphology and pulmonary blood supply. In those cases where surgery or conventional angiocardiography was performed results were compared. RESULTS: CE-MRA was considered diagnostic in 87%. Pulmonary artery morphology was classified as "confluent with (n = 1) and without (n = 1) main pulmonary artery", "non-confluent" (n = 6) or "absent" (n = 7). Source of pulmonary blood supply was "a persistent arterial duct" (n = 12), "a direct" (n = 22) or "indirect (n = 9) aortopulmonary collateral artery (APCA)" or "an APCA from the ascending aorta" (n = 2). In no patient were there any additional findings at surgery or conventional angiocardiography which would have changed the therapeutic or surgical approach. CONCLUSIONS: CE-MRA is a useful diagnostic tool for the preoperative evaluation of the morphology of pulmonary arteries and blood supply in neonates with PA. In most cases diagnostic cardiac catheterization can be avoided

    Metastasis of Tumor Cells Is Enhanced by Downregulation of Bit1

    Get PDF
    Resistance to anoikis, which is defined as apoptosis induced by loss of integrin-mediated cell attachment to the extracellular matrix, is a determinant of tumor progression and metastasis. We have previously identified the mitochondrial Bit1 (Bcl-2 inhibitor of transcription) protein as a novel anoikis effector whose apoptotic function is independent from caspases and is uniquely controlled by integrins. In this report, we examined the possibility that Bit1 is suppressed during tumor progression and that Bit1 downregulation may play a role in tumor metastasis.Using a human breast tumor tissue array, we found that Bit1 expression is suppressed in a significant fraction of advanced stages of breast cancer. Targeted disruption of Bit1 via shRNA technology in lowly aggressive MCF7 cells conferred enhanced anoikis resistance, adhesive and migratory potential, which correlated with an increase in active Extracellular kinase regulated (Erk) levels and a decrease in Erk-directed phosphatase activity. These pro-metastasis phenotypes were also observed following downregulation of endogenous Bit1 in Hela and B16F1 cancer cell lines. The enhanced migratory and adhesive potential of Bit1 knockdown cells is in part dependent on their high level of Erk activation since down-regulating Erk in these cells attenuated their enhanced motility and adhesive properties. The Bit1 knockdown pools also showed a statistically highly significant increase in experimental lung metastasis, with no differences in tumor growth relative to control clones in vivo using a BALB/c nude mouse model system. Importantly, the pulmonary metastases of Bit1 knockdown cells exhibited increased phospho-Erk staining.These findings indicate that downregulation of Bit1 conferred cancer cells with enhanced anoikis resistance, adhesive and migratory properties in vitro and specifically potentiated tumor metastasis in vivo. These results underscore the therapeutic importance of restoring Bit1 expression in cancer cells to circumvent metastasis at least in part through inhibition of the Erk pathway

    Management of chronic obstructive pulmonary disease in India: a systematic review.

    Get PDF
    OBJECTIVES: Chronic diseases are fast becoming the largest health burden in India. Despite this, their management in India has not been well studied. We aimed to systematically review the nature and efficacy of current management strategies for chronic obstructive pulmonary disease (COPD) in India. METHODS: We used database searches (MEDLINE, EMBASE, IndMED, CENTRAL and CINAHL), journal hand-searches, scanning of reference lists and contact with experts to identify studies for systematic review. We did not review management strategies aimed at chronic diseases more generally, nor management of acute exacerbations. Due to the heterogeneity of reviewed studies, meta-analysis was not appropriate. Thus, narrative methods were used. SETTING: India. PARTICIPANTS: All adult populations resident in India. MAIN OUTCOME MEASURES: 1. Trialled interventions and outcomes 2. Extent and efficacy of current management strategies 3. Above outcomes by subgroup. RESULTS: We found information regarding current management - particularly regarding the implementation of national guidelines and primary prevention - to be minimal. This led to difficulty in interpreting studies of management strategies, which were varied and generally of positive effect. Data regarding current management outcomes were very few. CONCLUSIONS: The current understanding of management strategies for COPD in India is limited due to a lack of published data. Determination of the extent of current use of management guidelines, availability and use of treatment, and current primary prevention strategies would be useful. This would also provide evidence on which to interpret existing and future studies of management outcomes and novel interventions

    Conserved Alternative Splicing and Expression Patterns of Arthropod N-Cadherin

    Get PDF
    Metazoan development requires complex mechanisms to generate cells with diverse function. Alternative splicing of pre-mRNA not only expands proteomic diversity but also provides a means to regulate tissue-specific molecular expression. The N-Cadherin gene in Drosophila contains three pairs of mutually-exclusive alternatively-spliced exons (MEs). However, no significant differences among the resulting protein isoforms have been successfully demonstrated in vivo. Furthermore, while the N-Cadherin gene products exhibit a complex spatiotemporal expression pattern within embryos, its underlying mechanisms and significance remain unknown. Here, we present results that suggest a critical role for alternative splicing in producing a crucial and reproducible complexity in the expression pattern of arthropod N-Cadherin. We demonstrate that the arthropod N-Cadherin gene has maintained the three sets of MEs for over 400 million years using in silico and in vivo approaches. Expression of isoforms derived from these MEs receives precise spatiotemporal control critical during development. Both Drosophila and Tribolium use ME-13a and ME-13b in “neural” and “mesodermal” splice variants, respectively. As proteins, either ME-13a- or ME-13b-containing isoform can cell-autonomously rescue the embryonic lethality caused by genetic loss of N-Cadherin. Ectopic muscle expression of either isoform beyond the time it normally ceases leads to paralysis and lethality. Together, our results offer an example of well-conserved alternative splicing increasing cellular diversity in metazoans

    Chemical Probes that Competitively and Selectively Inhibit Stat3 Activation

    Get PDF
    Signal transducer and activator of transcription (Stat) 3 is an oncogene constitutively activated in many cancer systems where it contributes to carcinogenesis. To develop chemical probes that selectively target Stat3, we virtually screened 920,000 small drug-like compounds by docking each into the peptide-binding pocket of the Stat3 SH2 domain, which consists of three sites—the pY-residue binding site, the +3 residue-binding site and a hydrophobic binding site, which served as a selectivity filter. Three compounds satisfied criteria of interaction analysis, competitively inhibited recombinant Stat3 binding to its immobilized pY-peptide ligand and inhibited IL-6-mediated tyrosine phosphorylation of Stat3. These compounds were used in a similarity screen of 2.47 million compounds, which identified 3 more compounds with similar activities. Examination of the 6 active compounds for the ability to inhibit IFN-γ-mediated Stat1 phosphorylation revealed that 5 of 6 were selective for Stat3. Molecular modeling of the SH2 domains of Stat3 and Stat1 bound to compound revealed that compound interaction with the hydrophobic binding site was the basis for selectivity. All 5 selective compounds inhibited nuclear-to-cytoplasmic translocation of Stat3, while 3 of 5 compounds induced apoptosis preferentially of breast cancer cell lines with constitutive Stat3 activation. Thus, virtual ligand screening of compound libraries that targeted the Stat3 pY-peptide binding pocket identified for the first time 3 lead compounds that competitively inhibited Stat3 binding to its pY-peptide ligand; these compounds were selective for Stat3 vs. Stat1 and induced apoptosis preferentially of breast cancer cells lines with constitutively activated Stat3

    Selective inhibitors of cardiac ADPR cyclase as novel anti-arrhythmic compounds

    Get PDF
    ADP-ribosyl cyclases (ADPRCs) catalyse the conversion of nicotinamide adenine dinucleotide to cyclic adenosine diphosphoribose (cADPR) which is a second messenger involved in Ca2+ mobilisation from intracellular stores. Via its interaction with the ryanodine receptor Ca2+ channel in the heart, cADPR may exert arrhythmogenic activity. To test this hypothesis, we have studied the effect of novel cardiac ADPRC inhibitors in vitro and in vivo in models of ventricular arrhythmias. Using a high-throughput screening approach on cardiac sarcoplasmic reticulum membranes isolated from pig and rat and nicotinamide hypoxanthine dinuleotide as a surrogate substrate, we have identified potent and selective inhibitors of an intracellular, membrane-bound cardiac ADPRC that are different from the two known mammalian ADPRCs, CD38 and CD157/Bst1. We show that two structurally distinct cardiac ADPRC inhibitors, SAN2589 and SAN4825, prevent the formation of spontaneous action potentials in guinea pig papillary muscle in vitro and that compound SAN4825 is active in vivo in delaying ventricular fibrillation and cardiac arrest in a guinea pig model of Ca2+ overload-induced arrhythmia. Inhibition of cardiac ADPRC prevents Ca2+ overload-induced spontaneous depolarizations and ventricular fibrillation and may thus provide a novel therapeutic principle for the treatment of cardiac arrhythmias

    The clinical application of electrical impedance technology in the detection of malignant neoplasms: a systematic review

    Get PDF
    Background: Electrical impedance technology has been well established for the last 20 years. Recently research has begun to emerge into its potential uses in the detection and diagnosis of pre-malignant and malignant conditions. The aim of this study was to systematically review the clinical application of electrical impedance technology in the detection of malignant neoplasms. Methods: A search of Embase Classic, Embase and Medline databases was conducted from 1980 to 22/02/2018 to identify studies reporting on the use of bioimpedance technology in the detection of pre-malignant and malignant conditions. The ability to distinguish between tissue types was defined as the primary endpoint, and other points of interest were also reported. Results: 731 articles were identified, of which 51 reported sufficient data for analysis. These studies covered 16 different cancer subtypes in a total of 7035 patients. As the studies took various formats, a qualitative analysis of each cancer subtype’s data was undertaken. All the studies were able to show differences in electrical impedance and/or related metrics between malignant and normal tissue. Conclusions: Electrical impedance technology provides a novel method for the detection of malignant tissue, with large studies of cervical, prostate, skin and breast cancers showing encouraging results. Whilst these studies provide promising insights into the potential of this technology as an adjunct in screening, diagnosis and intra-operative margin assessment, customised development as well as multi-centre clinical trials need to be conducted before it can be reliably employed in the clinical detection of malignant tissue

    Longitudinal study of adolescent tobacco use and tobacco control policies in India

    Get PDF
    Abstract Background This project will use a multilevel longitudinal cohort study design to assess whether changes in Community Tobacco Environmental (CTE) factors, measured as community compliance with tobacco control policies and community density of tobacco vendors and tobacco advertisements, are associated with adolescent tobacco use in urban India. India’s tobacco control policies regulate secondhand smoke exposure, access to tobacco products and exposure to tobacco marketing. Research data about the association between community level compliance with tobacco control policies and youth tobacco use are largely unavailable, and are needed to inform policy enforcement, implementation and development. Methods The geographic scope will include Mumbai and Kolkata, India. The study protocol calls for an annual comprehensive longitudinal population-based tobacco use risk and protective factors survey in a cohort of 1820 adolescents ages 12–14 years (and their parent) from baseline (Wave 1) to 36-month follow-up (Wave 4). Geographic Information Systems data collection will be used to map tobacco vendors, tobacco advertisements, availability of e-cigarettes, COTPA defined public places, and compliance with tobacco sale, point-of-sale and smoke-free laws. Finally, we will estimate the longitudinal associations between CTE factors and adolescent tobacco use, and assess whether the associations are moderated by family level factors, and mediated by individual level factors. Discussion India experiences a high burden of disease and mortality from tobacco use. To address this burden, significant long-term prevention and control activities need to include the joint impact of policy, community and family factors on adolescent tobacco use onset. The findings from this study can be used to guide the development and implementation of future tobacco control policy designed to minimize adolescent tobacco use.https://deepblue.lib.umich.edu/bitstream/2027.42/144539/1/12889_2018_Article_5727.pd

    Management practices for control of ragwort species

    Get PDF
    The ragwort species common or tansy ragwort (Jacobaea vulgaris, formerly Senecio jacobaea), marsh ragwort (S. aquaticus), Oxford ragwort (S. squalidus) and hoary ragwort (S. erucifolius) are native in Europe, but invaded North America, Australia and New Zealand as weeds. The abundance of ragwort species is increasing in west-and central Europe. Ragwort species contain different groups of secondary plant compounds defending them against generalist herbivores, contributing to their success as weeds. They are mainly known for containing pyrrolizidine alkaloids, which are toxic to grazing cattle and other livestock causing considerable losses to agricultural revenue. Consequently, control of ragwort is obligatory by law in the UK, Ireland and Australia. Commonly used management practices to control ragwort include mechanical removal, grazing, pasture management, biological control and chemical control. In this review the biology of ragwort species is shortly described and the different management practices are discussed

    Module-based multiscale simulation of angiogenesis in skeletal muscle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical modeling of angiogenesis has been gaining momentum as a means to shed new light on the biological complexity underlying blood vessel growth. A variety of computational models have been developed, each focusing on different aspects of the angiogenesis process and occurring at different biological scales, ranging from the molecular to the tissue levels. Integration of models at different scales is a challenging and currently unsolved problem.</p> <p>Results</p> <p>We present an object-oriented module-based computational integration strategy to build a multiscale model of angiogenesis that links currently available models. As an example case, we use this approach to integrate modules representing microvascular blood flow, oxygen transport, vascular endothelial growth factor transport and endothelial cell behavior (sensing, migration and proliferation). Modeling methodologies in these modules include algebraic equations, partial differential equations and agent-based models with complex logical rules. We apply this integrated model to simulate exercise-induced angiogenesis in skeletal muscle. The simulation results compare capillary growth patterns between different exercise conditions for a single bout of exercise. Results demonstrate how the computational infrastructure can effectively integrate multiple modules by coordinating their connectivity and data exchange. Model parameterization offers simulation flexibility and a platform for performing sensitivity analysis.</p> <p>Conclusions</p> <p>This systems biology strategy can be applied to larger scale integration of computational models of angiogenesis in skeletal muscle, or other complex processes in other tissues under physiological and pathological conditions.</p
    corecore