4 research outputs found

    Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials

    Get PDF
    Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime

    Tunable room temperature nonlinear Hall effect from the surfaces of elementary bismuth thin films

    Full text link
    The nonlinear Hall effect (NLHE) with time-reversal symmetry constitutes the appearance of a transverse voltage quadratic in the applied electric field. It is a second-order electronic transport phenomenon that induces frequency doubling and occurs in non-centrosymmetric crystals with large Berry curvature -- an emergent magnetic field encoding the geometric properties of electronic wavefunctions. The design of (opto)electronic devices based on the NLHE is however hindered by the fact that this nonlinear effect typically appears at low temperatures and in complex compounds characterized by Dirac or Weyl electrons. Here, we show a strong room temperature NLHE in the centrosymmetric elemental material bismuth synthesized in the form of technologically relevant polycrystalline thin films. The (1 1 11\,1\,1) surface electrons of this material are equipped with a Berry curvature triple that activates side jumps and skew scatterings generating nonlinear transverse currents. We also report a boost of the zero field nonlinear transverse voltage in arc-shaped bismuth stripes due to an extrinsic geometric classical counterpart of the NLHE. This electrical frequency doubling in curved geometries is then extended to optical second harmonic generation in the terahertz (THz) spectral range. The strong nonlinear electrodynamical responses of the surface states are further demonstrated by a concomitant highly efficient THz third harmonic generation which we achieve in a broad range of frequencies in Bi and Bi-based heterostructures. Combined with the possibility of growth on CMOS-compatible and mechanically flexible substrates, these results highlight the potential of Bi thin films for THz (opto)electronic applications.Comment: 44 pages, 21 figure

    Spin-orbit interaction driven terahertz nonlinear dynamics in transition metals

    Full text link
    The interplay of electric charge, spin, and orbital polarizations, coherently driven by picosecond long oscillations of light fields in spin-orbit coupled systems, is the foundation of emerging terahertz spintronics and orbitronics. The essential rules for how terahertz light interacts with these systems in a nonlinear way are still not understood. In this work, we demonstrate a universally applicable electronic nonlinearity originating from spin-orbit interactions in conducting materials, wherein the interplay of light-induced spin and orbital textures manifests. We utilized terahertz harmonic generation spectroscopy to investigate the nonlinear dynamics over picosecond timescales in various transition metal films. We found that the terahertz harmonic generation efficiency scales with the spin Hall conductivity in the studied films, while the phase takes two possible values (shifted by {\pi}), depending on the d-shell filling. These findings elucidate the fundamental mechanisms governing non-equilibrium spin and orbital polarization dynamics at terahertz frequencies, which is relevant for potential applications of terahertz spin- and orbital-based devices.Comment: 11 pages, 4 figure

    Ultrafast Tunable Terahertz-to-Visible Light Conversion through Thermal Radiation from Graphene Metamaterials [Dataset]

    Get PDF
    6 pages. -- Supplementary Note 1, Sample Preparation. -- Supplementary Note 2, Experimental. -- Supplementary Note 3, Calculations of electron temperature. -- Supplementary Note 4, THz fluence and intensity. -- Supplementary Figures. -- Supplementary References.Several technologies, including photodetection, imaging, and data communication, could greatly benefit from the availability of fast and controllable conversion of terahertz (THz) light to visible light. Here, we demonstrate that the exceptional properties and dynamics of electronic heat in graphene allow for a THz-to-visible conversion, which is switchable at a sub-nanosecond time scale. We show a tunable on/off ratio of more than 30 for the emitted visible light, achieved through electrical gating using a gate voltage on the order of 1 V. We also demonstrate that a grating-graphene metamaterial leads to an increase in THz-induced emitted power in the visible range by 2 orders of magnitude. The experimental results are in agreement with a thermodynamic model that describes blackbody radiation from the electron system heated through intraband Drude absorption of THz light. These results provide a promising route toward novel functionalities of optoelectronic technologies in the THz regime.Peer reviewe
    corecore