8,969 research outputs found

    Periodic orbit bifurcations and scattering time delay fluctuations

    Full text link
    We study fluctuations of the Wigner time delay for open (scattering) systems which exhibit mixed dynamics in the classical limit. It is shown that in the semiclassical limit the time delay fluctuations have a distribution that differs markedly from those which describe fully chaotic (or strongly disordered) systems: their moments have a power law dependence on a semiclassical parameter, with exponents that are rational fractions. These exponents are obtained from bifurcating periodic orbits trapped in the system. They are universal in situations where sufficiently long orbits contribute. We illustrate the influence of bifurcations on the time delay numerically using an open quantum map.Comment: 9 pages, 3 figures, contribution to QMC200

    Bilinear and quadratic Hamiltonians in two-mode cavity quantum electrodynamics

    Full text link
    In this work we show how to engineer bilinear and quadratic Hamiltonians in cavity quantum electrodynamics (QED) through the interaction of a single driven two-level atom with cavity modes. The validity of the engineered Hamiltonians is numerically analyzed even considering the effects of both dissipative mechanisms, the cavity field and the atom. The present scheme can be used, in both optical and microwave regimes, for quantum state preparation, the implementation of quantum logical operations, and fundamental tests of quantum theory.Comment: 11 pages, 3 figure

    Variação temporal e espacial de parâmetros de qualidade de água no reservatório de Barra Bonita/SP, como subsídio ao manejo da bacia de contribuição.

    Get PDF
    bitstream/item/135805/1/BPD-228-Qualidade-Agua.pd

    Universal quantum signature of mixed dynamics in antidot lattices

    Get PDF
    We investigate phase coherent ballistic transport through antidot lattices in the generic case where the classical phase space has both regular and chaotic components. It is shown that the conductivity fluctuations have a non-Gaussian distribution, and that their moments have a power-law dependence on a semiclassical parameter, with fractional exponents. These exponents are obtained from bifurcating periodic orbits in the semiclassical approximation. They are universal in situations where sufficiently long orbits contribute.Comment: 7 page

    Nonadiabatic coherent evolution of two-level systems under spontaneous decay

    Full text link
    In this paper we extend current perspectives in engineering reservoirs by producing a time-dependent master equation leading to a nonstationary superposition equilibrium state that can be nonadiabatically controlled by the system-reservoir parameters. Working with an ion trapped inside a nonindeal cavity we first engineer effective Hamiltonians that couple the electronic states of the ion with the cavity mode. Subsequently, two classes of decoherence-free evolution of the superposition of the ground and decaying excited levels are achieved: those with time-dependent azimuthal or polar angle. As an application, we generalise the purpose of an earlier study [Phys. Rev. Lett. 96, 150403 (2006)], showing how to observe the geometric phases acquired by the protected nonstationary states even under a nonadiabatic evolution.Comment: 5 pages, no figure

    Electrospun polymeric dressings functionalized with antimicrobial peptides and collagen type I for enhanced wound healing

    Get PDF
    Modern wound dressings combine medical textiles with active compounds that stimulate wound healing while protecting against infection. Electrospun wound dressings have been extensively studied and the electrospinning technique recognized as an efficient approach for the production of nanoscale fibrous mats. The unique diverse function and architecture of antimicrobial peptides (AMPs) has attracted considerable attention as a tool for the design of new anti-infective drugs. Functionalizing electrospun wound dressings with these AMPs is nowadays being researched. In the present work, we explore these new systems by highlighting the most important characteristics of electropsun wound dressings, revealing the importance of AMPs to wound healing, and the methods available to functionalize the electrospun mats with these molecules. The combined therapeutic potential of collagen type I and these AMP functionalized dressings will be highlighted as well; the significance of these new strategies for the future of wound healing will be clarified.FCT -Fuel Cell Technologies Program(POCI-01-0145-FEDER-007136)info:eu-repo/semantics/publishedVersio

    Antimicrobial peptides in infected wounds

    Get PDF
    Wound healing is a fundamental process to re-establish tissue integrity. Microbial infections, however, may hinder this process and compromise our health. The increasing resistance of microorganisms colonizing infections to conventional antibiotics has raised many concerns. Hence, new treatment options have been researched and new biomolecules uncovered. As known, multicellular organisms are endowed with an arsenal of host-defense molecules, the Antimicrobial Peptides (AMPs) that fight microbial invaders and modulate the host’s immune response. In recent years, research has been focused on the development of such molecules with lower toxicity and improved activity compared to their endogenous counterparts for potential applications in wound healing. The present work offers a review over AMPs involved in wound healing and used against infected wounds, their potentialities and limitations, and highlights their mode of action. The challenges with the use of AMPs and the current strategies to prevent those challenges are also enumerated

    Superscars in the LiNC=LiCN isomerization reaction

    Full text link
    We demonstrate the existence of superscarring in the LiNC=LiCN isomerization reaction described by a realistic potential interaction in the range of readily attainable experimental energies. This phenomenon arises as the effect of two periodic orbits appearing "out of the blue"in a saddle--node bifurcation taking place in the dynamics of the system. Potential practical consequences of this superlocalization in the corresponding wave functions are also considered.Comment: 6 pages, 5 figures. to appear in EP
    corecore