6 research outputs found

    The nuclear envelope in higher plant mitosis and meiosis

    Get PDF
    Mitosis and meiosis in higher plants involves significant reconfiguration of the nuclear envelope and the proteins that interact with it. The dynamic series of events involves a range of interactions, movement, breakdown and reformation of this complex system. Recently, progress has been made in identifying and characterising the protein and membrane interactome that performs these complex tasks, including constituents of the nuclear envelope, the cytoskeleton, nucleoskeleton and chromatin. This review will present current understanding of these interactions and advances in knowledge of the processes for the breakdown and reformation of the nuclear envelope during cell divisions in plants

    The Role of Chromatin Domains in Plant Meiosis

    No full text
    In this teaching webinar for the INDEPTH Academy Dr Monica Pradillo Introduces the Role of Chromatin Domains on Plant Meiosis

    The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis

    Get PDF
    Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis. Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.</p

    The Arabidopsis Hop1 homolog ASY1 mediates cross-over assurance and interference

    No full text
    The chromosome axis plays a crucial role in meiotic recombination. Here, we study the function of ASY1, the Arabidopsis homolog of the yeast chromosome axis-associated component Hop1. Specifically, we characterized cross-over (CO) distribution in female and male meiosis by deep sequencing of the progeny of an allelic series of asy1 mutants. Combining data from nearly 1,000 individual plants, we find that reduced ASY1 functionality leads to genomic instability and sometimes drastic genomic rearrangements. We further observed that COs are less frequent and appear in more distal chromosomal regions in plants with no or reduced ASY1 functionality, consistent with previous analyses. However, our sequencing approach revealed that the reduction in CO number is not as dramatic as suggested by cytological analyses. Analysis of double mutants of asy1 with mutants with three other CO factors, MUS81, MSH4, and MSH5, as well as the determination of foci number of the CO regulator MLH1 demonstrates that the majority of the COs in asy1, similar to the situation in the wildtype (WT), largely belong to the class I, which are subject to interference. However, these COs are redistributed in asy1 mutants and typically appear much closer than in the WT. Hence, ASY1 plays a key role in CO interference that spaces COs along a chromosome. Conversely, since a large proportion of chromosomes do not receive any CO, we conclude that CO assurance, the process that ensures the obligatory assignment of one CO per chromosome, is also affected in asy1 mutants.Depto. de Genética, Fisiología y MicrobiologíaFac. de Ciencias BiológicasTRUEpu
    corecore