64 research outputs found

    Identification of wheat cultivars for low nitrogen tolerance using multivariable screening approaches

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). A set of thirty-six wheat cultivars were grown for two consecutive years under low and high nitrogen conditions. The interactions of cultivars with different environmental factors were shown to be highly significant for most of the studied traits, suggesting the presence of wider genetic variability which may be utilized for the genetic improvement of desired trait(s). Three cultivars, i.e., RAJ 4037, DBW 39 and GW 322, were selected based on three selection indices, i.e., tolerance index (TOL), stress susceptibility index (SSI), and yield stability index (YSI), while two cultivars, HD 2967 and MACS 6478, were selected based on all four selection indices which were common in both of the study years. According to Kendall’s concordance coefficient, the consistency of geometric mean productivity (GMP) was found to be highest (0.778), followed by YSI (0.556), SSI (0.472), and TOL (0.200). Due to the high consistency of GMP followed by YSI and SSI, the three selection indices could be utilized as a selection tool in the identification of high-yielding genotypes under low nitrogen conditions. The GMP and YSI selection indices had a positive and significant correlation with grain yield, whereas TOL and SSI exhibited a significant but negative correlation with grain yield under both high and low nitrogen conditions in both years. The common tolerant genotypes identified through different selection indices could be utilized as potential donors in active breeding programs to incorporate the low nitrogen tolerant genes to develop high-yielding wheat varieties for low nitrogen conditions. The study also helps in understanding the physiological basis of tolerance in high-yielding wheat genotypes under low nitrogen conditions

    Mixed-size concurrency: ARM, POWER, C/C++11, and SC

    Get PDF
    Previous work on the semantics of relaxed shared-memory concurrency has only considered the case in which each load reads the data of exactly one store. In practice, however, multiprocessors support mixed-size accesses, and these are used by systems software and (to some degree) exposed at the C/C++ language level. A semantic foundation for software, therefore, has to address them. We investigate the mixed-size behaviour of ARMv8 and IBM POWER architectures and implementations: by experiment, by developing semantic models, by testing the correspondence between these, and by discussion with ARM and IBM staff. This turns out to be surprisingly subtle, and on the way we have to revisit the fundamental concepts of coherence and sequential consistency, which change in this setting. In particular, we show that adding a memory barrier between each instruction does not restore sequential consistency. We go on to extend the C/C++11 model to support nonatomic mixed-size memory accesses, and prove the standard compilation scheme from C11 atomics to POWER remains sound. This is a necessary step towards semantics for real-world shared-memory concurrent code, beyond litmus tests

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Medusa

    No full text

    Designing Novel Multi-Epitope Vaccine Construct against <i>Prevotella intermedia</i>-Interpain A: An Immunoinformatics Approach

    No full text
    Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine’s 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia
    • 

    corecore