9 research outputs found

    Structural insight into self assembly of sophorolipids: a molecular dynamics simulation study

    No full text
    Sophorolipids contain hydrophilic head groups at the ends of a long hydrophobic tail. As a result, sophorolipids can self assemble into variety of structures in water. Atomistic self assembly simulations of sophorolipids are performed in water. Two sophorolipids, oleic acid sophorolipid and linolenic acid sophorolipid, differing in number of double bonds in the hydrophobic tail are considered for this study. Long time self assembly simulations are performed considering 1:3 lipid to water ratio by weight for both oleic and linolenic acid sophorolipids. In addition to 1:3 ratio, long time self assembly simulations are also performed with 1:1 and 1:2 ratios for linolenic acid sophorolipids. Distinctions in structural arrangements of sophorolipid molecules in the self assembled configuration for all the systems are investigated. The present study aims to provide structural insight into the different self assembled configurations of sophorolipids in water

    Access to harmonine, a chemical weapon of ladybird beetles

    No full text
    The synthesis of harmonine, a defense alkaloid from the harlequin ladybird is reported by three different routes. The preparation of several new analogs with the same molecular weight and the decoration of gold nanoparticles with harmonines are also part of the present communication

    Vesicle structures from bolaamphiphilic biosurfactants: experimental and molecular dynamics simulation studies on the effect of unsaturation on sophorolipid self-assemblies

    No full text
    The formation of giant-vesicle-like structures by self-assembling linolenic acid sophorolipid (LNSL) molecules is revealed. Sophorolipids belong to the class of bolaamphiphilic glycolipid biosurfactants. Interestingly, the number of double bonds present in the hydrophobic core of sophorolipids is seen to have a great influence on the type of self-assembled structures formed. Dye encapsulation results establish the presence of an aqueous compartment inside the LNSL vesicles. Molecular dynamics simulation (MD) studies suggest the existence of two possible conformations of LNSLs inside the self-assembled structures and that LNSL molecules arrange in layered structures

    pH- and Time-Resolved <i>in Situ</i> SAXS Study of Self-Assembled Twisted Ribbons Formed by Elaidic Acid Sophorolipids

    No full text
    Conditions that favor the helical structure formation in structurally similar sophorolipids (SLs), that is, elaidic acid SLs (having a <i>trans</i> double bond between the C9 and C10 positions of the alkyl chain) and stearic acid SLs (no double bond), are presented here. The helical self-assembled structures formed by elaidic acid SLs were independent of pH and also were mediated by a micellar intermediate. On the other hand, the stearic acid SLs formed helical structures under low pH condition only. Astonishingly, the formation routes were found to be different, albeit the molecular geometry of both SLs is similar. Even if a conclusive mechanistic understanding must await further work, our studies strongly point out that the noncovalent weak interactions in elaidic acid SLs are able to overcome the electrostatic repulsions of the sophorolipid carboxylate groups at basic pH and facilitating the formation of helical structures. On the other hand, the hydrophobic interactions in stearic acid SLs endow the helical structures with extra stability, making them less vulnerable to dissolution upon heating

    Micelles versus ribbons : how congeners drive the self-assembly of acidic sophorolipid biosurfactants

    No full text
    Sophorolipids (SLs), a class of microbially derived biosurfactants, are reported by different research groups to have different self-assembled structures (either micelles or giant ribbons) under the same conditions. Here we explore the reasons behind these contradictory results and attribute these differences to the role of specific congeners that are present in minute quantities. We show that a sample composed of a majority of oleic acid (C18:1) sophorolipid in the presence of only 0.5% (or more) of congeners with stearic acid (C18:0) or linoleic acid (C18:2) results in the formation of micelles that are stable over long periods of time. Conversely, the presence of only 10 to 15% of congeners with a stearic acid chain gives fibrillar structures instead of micelles. To study the mechanisms responsible, oleic acid SLs devoid of any other congeners were prepared. Very interestingly, this sample can self-assemble into either micelles or fibers depending on minute modifications to the self-assembly conditions. The findings are supported by light scattering, small-angle X-ray scattering, transmission electron microscopy under cryogenic conditions, high-pressure liquid chromatography, and NMR spectroscopy

    Audible sound-controlled spatiotemporal patterns in out-of-equilibrium systems

    No full text
    © 2020, The Author(s), under exclusive licence to Springer Nature Limited. Naturally occurring spatiotemporal patterns typically have a predictable pattern design and are reproducible over several cycles. However, the patterns obtained from artificially designed out-of-equilibrium chemical oscillating networks (such as the Belousov–Zhabotinsky reaction for example) are unpredictable and difficult to control spatiotemporally, albeit reproducible over subsequent cycles. Here, we show that it is possible to generate reproducible spatiotemporal patterns in out-of-equilibrium chemical reactions and self-assembling systems in water in the presence of sound waves, which act as a guiding physical stimulus. Audible sound-induced liquid vibrations control the dissolution of atmospheric gases (such as O2 and CO2) in water to generate spatiotemporal chemical patterns in the bulk of the fluid, segregating the solution into spatiotemporal domains having different redox properties or pH values. It further helps us in the organization of transiently formed supramolecular aggregates in a predictable spatiotemporal manner. [Figure not available: see fulltext.11sciescopu

    Micelles versus Ribbons: how congeners drive the self-assembly of acidic sophorolipid biosurfactants

    No full text
    Sophorolipids (SLs), a class of microbially derived biosurfactants, are reported by different research groups to have different self-assembled structures (either micelles or giant ribbons) under the same conditions. Here we explore the reasons behind these contradictory results and attribute these differences to the role of specific congeners that are present in minute quantities. We show that a sample composed of a majority of oleic acid (C18:1) sophorolipid in the presence of only 0.5 % (or more) of congeners with stearic acid (C18:0) or linoleic acid (C18:2) results in the formation of micelles that are stable over long periods of time. Conversely, the presence of only 10 to 15 % of congeners with a stearic acid chain gives fibrillar structures instead of micelles. To study the mechanisms responsible, oleic acid SLs devoid of any other congeners were prepared. Very interestingly, this sample can self-assemble into either micelles or fibers depending on minute modifications to the self-assembly conditions. The findings are supported by light scattering, small-angle X-ray scattering, transmission electron microscopy under cryogenic conditions, high-pressure liquid chromatography, and NMR spectroscopy

    Cascade reaction networks within audible sound induced transient domains in a solution

    No full text
    © 2022, The Author(s).Spatiotemporal control of chemical cascade reactions within compartmentalized domains is one of the difficult challenges to achieve. To implement such control, scientists have been working on the development of various artificial compartmentalized systems such as liposomes, vesicles, polymersomes, etc. Although a considerable amount of progress has been made in this direction, one still needs to develop alternative strategies for controlling cascade reaction networks within spatiotemporally controlled domains in a solution, which remains a non-trivial issue. Herein, we present the utilization of audible sound induced liquid vibrations for the generation of transient domains in an aqueous medium, which can be used for the control of cascade chemical reactions in a spatiotemporal fashion. This approach gives us access to highly reproducible spatiotemporal chemical gradients and patterns, in situ growth and aggregation of gold nanoparticles at predetermined locations or domains formed in a solution. Our strategy also gives us access to nanoparticle patterned hydrogels and their applications for region specific cell growth.11Nsciescopu
    corecore