334 research outputs found

    Bounded Temporal Fairness for FIFO Financial Markets

    Get PDF
    Financial exchange operators cater to the needs of their users while simultaneously ensuring compliance with the financial regulations. In this work, we focus on the operators' commitment for fair treatment of all competing participants. We first discuss unbounded temporal fairness and then investigate its implementation and infrastructure requirements for exchanges. We find that these requirements can be fully met only under ideal conditions and argue that unbounded fairness in FIFO markets is unrealistic. To further support this claim, we analyse several real-world incidents and show that subtle implementation inefficiencies and technical optimizations suffice to give unfair advantages to a minority of the participants. We finally introduce, {\epsilon}-fairness, a bounded definition of temporal fairness and discuss how it can be combined with non-continuous market designs to provide equal participant treatment with minimum divergence from the existing market operation

    Exploring the nutritional and health benefits of pulses from the Indian Himalayan region: A glimpse into the region’s rich agricultural heritage

    Get PDF
    Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.Universidade de Vigo/CISU

    Recurrent Modification of a Conserved Cis-Regulatory Element Underlies Fruit Fly Pigmentation Diversity

    Get PDF
    The development of morphological traits occurs through the collective action of networks of genes connected at the level of gene expression. As any node in a network may be a target of evolutionary change, the recurrent targeting of the same node would indicate that the path of evolution is biased for the relevant trait and network. Although examples of parallel evolution have implicated recurrent modification of the same gene and cis-regulatory element (CRE), little is known about the mutational and molecular paths of parallel CRE evolution. In Drosophila melanogaster fruit flies, the Bric-à-brac (Bab) transcription factors control the development of a suite of sexually dimorphic traits on the posterior abdomen. Female-specific Bab expression is regulated by the dimorphic element, a CRE that possesses direct inputs from body plan (ABD-B) and sex-determination (DSX) transcription factors. Here, we find that the recurrent evolutionary modification of this CRE underlies both intraspecific and interspecific variation in female pigmentation in the melanogaster species group. By reconstructing the sequence and regulatory activity of the ancestral Drosophila melanogaster dimorphic element, we demonstrate that a handful of mutations were sufficient to create independent CRE alleles with differing activities. Moreover, intraspecific and interspecific dimorphic element evolution proceeded with little to no alterations to the known body plan and sex-determination regulatory linkages. Collectively, our findings represent an example where the paths of evolution appear biased to a specific CRE, and drastic changes in function were accompanied by deep conservation of key regulatory linkages. © 2013 Rogers et al

    Increasing Trends of Leptospirosis in Northern India: A Clinico-Epidemiological Study

    Get PDF
    Leptospirosis is often not suspected by physicians in patients with acute febrile illnesses reporting from supposedly “non-endemic areas,” including north India. Clinical manifestations are protean, and complications can affect most organ systems, including liver, kidneys, lungs, and the central nervous system. Timely diagnosis and specific therapy can reduce severity of illness and, in turn, mortality. In this study conducted at a tertiary care center in north India, we find how a much-neglected disease entity has emerged as a major cause of acute febrile illness in a so called “non-endemic area.” Incidence is increasing yearly. The majority of patients were from a rural background, and were farmers or farm labourers. Poor hygiene, contact with animals, rat infestation of houses, and contact with stagnant dirty water are the major determinants of disease. Apart from the usual symptoms of intermittent fever with chill and rigor, hepatosplenomegaly, renal decompensation, muscle pain and tenderness, and conjunctival suffusion, signs and symptoms indicating involvement of the respiratory and central nervous systems were also commonly observed. Severe complications resulting in mortality do occur and is especially due to late suspicion among primary level physicians, and the resulting inappropriate therapy

    Extensive Evolutionary Changes in Regulatory Element Activity during Human Origins Are Associated with Altered Gene Expression and Positive Selection

    Get PDF
    Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species

    First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.)

    Full text link
    [EN] Background: Zucchini fruit set can be limited due to unfavourable environmental conditions in off-seasons crops that caused ineffective pollination/fertilization. Parthenocarpy, the natural or artificial fruit development without fertilization, has been recognized as an important trait to avoid this problem, and is related to auxin signalling. Nevertheless, differences found in transcriptome analysis during early fruit development of zucchini suggest that other complementary pathways could regulate fruit formation in parthenocarpic cultivars of this species. The development of next-generation sequencing technologies (NGS) as RNA-sequencing (RNA-seq) opens a new horizon for mapping and quantifying transcriptome to understand the molecular basis of pathways that could regulate parthenocarpy in this species. The aim of the current study was to analyze fruit transcriptome of two cultivars of zucchini, a non-parthenocarpic cultivar and a parthenocarpic cultivar, in an attempt to identify key genes involved in parthenocarpy. Results: RNA-seq analysis of six libraries (unpollinated, pollinated and auxin treated fruit in a non-parthenocarpic and parthenocarpic cultivar) was performed mapping to a new version of C. pepo transcriptome, with a mean of 92% success rate of mapping. In the non-parthenocarpic cultivar, 6479 and 2186 genes were differentially expressed (DEGs) in pollinated fruit and auxin treated fruit, respectively. In the parthenocarpic cultivar, 10,497 in pollinated fruit and 5718 in auxin treated fruit. A comparison between transcriptome of the unpollinated fruit for each cultivar has been performed determining that 6120 genes were differentially expressed. Annotation analysis of these DEGs revealed that cell cycle, regulation of transcription, carbohydrate metabolism and coordination between auxin, ethylene and gibberellin were enriched biological processes during pollinated and parthenocarpic fruit set. Conclusion: This analysis revealed the important role of hormones during fruit set, establishing the activating role of auxins and gibberellins against the inhibitory role of ethylene and different candidate genes that could be useful as markers for parthenocarpic selection in the current breeding programs of zucchini.Research worked is supported by the project RTA2014-00078 from the Spanish Institute of Agronomy Research INIA (Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria) and also PP.AVA.AVA201601.7, FEDER y FSE (Programa Operativo FSE de Andalucia 2007-2013 "Andalucia se mueve con Europa"). TPV is supported by a FPI scholarship from RTA2011-00044-C02-01/02 project of INIA. The funding agencies were not involved in the design of the study, collection, analysis, and interpretation of data and in writing the manuscript.Pomares-Viciana, T.; Del Rio-Celestino, M.; Roman, B.; Die, J.; Picó Sirvent, MB.; Gómez, P. (2019). First RNA-seq approach to study fruit set and parthenocarpy in zucchini (Cucurbita pepo L.). BMC Plant Biology. 19:1-20. https://doi.org/10.1186/s12870-019-1632-2S12019Varga A, Bruinsma J. Tomato. In: Monselise SP, editor. CRC Handbook of Fruit Set and Development. Boca Raton: CRC Press; 1986. p. 461–80.Nepi M, Cresti L, Guarnieri M, Pacini E. Effect of relative humidity on water content, viability and carbohydrate profile of Petunia hybrid and Cucurbita pepo pollen. Plant Syst Evol. 2010;284:57–64.Gustafson FG. Parthenocarpy: natural and artificial. Bot Rev. 1942;8:599–654.Robinson RW, Reiners S. Parthenocarpy in summer squash. Hortscience. 1999;34:715–7.Pomares-Viciana T, Die J, Del Río-Celestino M, Román B, Gómez P. Auxin signalling regulation during induced and parthenocarpic fruit set in zucchini. Mol Breeding. 2017;37:56.Ozga JA, Reinecke DM. Hormonal interactions in fruit development. J Plant Growth Regul. 2003;22:73–81.Kim IS, Okubo H, Fujieda K. Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L). Sci Hortic. 1992;52:1–8.Olimpieri I, Siligato F, Caccia R, Mariotti L, Ceccarelli N, Soressi GP, et al. Tomato fruit set driven by pollination or by the parthenocarpic fruit allele are mediated by transcriptionally regulated gibberellin biosynthesis. Planta. 2007;226:877–88.Cui L, Zhang T, Li J, Lou Q, Chen J. Cloning and expression analysis of Cs-TIR1/AFB2: the fruit development-related genes of cucumber (Cucumis sativus L.). Acta Physiol Plant. 2014;36:139–49.De Jong M, Wolters-Arts J, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signalling during tomato fruit set and development. Plant J. 2009;57:160–70.Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latché A, Pech JC, Bouzayen M. The tomato aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell. 2005;17(10):2676–92.Goetz M, Vivian-Smith A, Johnson SD, Koltunow AM. AUXIN RESPONSE FACTOR 8 is a negative regulator of fruit initiation in Arabidopsis. Plant Cell. 2006;18(8):1873–86.Mazzucato A, Cellini F, Bouzayen M, Zouine M, Mila I, Minoia S et al. A TILLING allele of the tomato aux/IAA9 gene offers new insights into fruit set mechanisms and perspectives for breeding seedless tomatoes. Mol Breeding. 2015; 35(22):1-15.Blanca J, Cañizares J, Roig C, Ziarsolo P, Nuez F, Picó B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104.Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10(1):57–63.Da Fonseca RR, Albrechtsen A, Themudo GE, Ramos-Madrigal J, Sibbesen JA, Maretty L, et al. Next-generation biology: sequencing and data analysis approaches for non-model organisms. Mar Genomics. 2016;30:3–13.Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of best practices for RNA-seq data analysis. Genome Biol. 2016;17:13.Li J, Cui ZWJ, Zhang T, Guo Q, Xu J, Li J, et al. Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber (Cucumis sativus L). Plant Cell Physiol. 2014;55(7):1325–42.Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics. 2012;28(23):3150–2.Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, et al. De novo assembly of the zucchini genome reveals a whole genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J. 2017. https://doi.org/10.1111/pbi.12860 .Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C. Changes in tomato ovary transcriptome demonstrate complex hormonal regulation of fruit set. New Phytol. 2008;177:60–76.Tang N, Deng W, Hu G, Hu N, Li Z. Transcriptome profiling reveals the regulatory mechanism underlying pollination dependent and parthenocarpic fruit set mainly mediated by auxin and gibberellin. PLoS One. 2015;10(4):e0125355.Li J, Yan S, Yang W, Li Y, Xia M, Chen Z, et al. Transcriptomic analysis reveals the roles of microtubule-related genes and transcription factors in fruit length regulation in cucumber (Cucumis sativus L.). Sci Rep. 2015;26(5):8031.Mironov V, De Veylder L, Van Montagu M, Inze D. Cyclin-dependent kinases and cell division in plants- the nexus. Plant Cell. 1999;11(4):509–22.Perrot-Rechenmann C. Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol. 2010;2(5):a001446.De Veylder L, Beeckman T, Beemster GT, Krols L, Terras F, Landrieu I, et al. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell. 2001;13:1653–68.Nieuwland J, Menges M, Murray JAH. The plant cyclins. In: Inze D, editor. Cell cycle control and plant development, vol. 2007. Oxford: Wiley-Blackwell Publishing; 2007. p. 33–61.Menges M, Samland AK, Planchais S, Murray JA. The D-type cyclin CYCD3;1 is limiting for the G1-to-S-phasetransition in Arabidopsis. Plant Cell. 2006;18:893–906.Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, Geelen D, et al. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. Plant Physiol. 2010;152(2):553–65.Sampedro J, Cosgrove DJ. The expansin superfamily. Genome Biol. 2005;6:242.Esmon CA, Tinsley AG, Ljung K, Sandberg G, Hearne LB, Liscum E. A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proc Natl Acad Sci. 2006;103:236–41.De Folter S, Busscher J, Colombo L, Losa A, Angenent GC. Transcript profiling of transcription factors genes during siliques development in Arabidopsis. Plant Mol Bio. 2004;56:351–3662004.Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, et al. Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun. 2005;326(1):203–9.Olsson ASB, Engstroem P, Seoderman E. The homeobox genes ATHB12 and ATHB7 encode potential regulators of growth in response to water deficit in Arabidopsis. Plant Mol Biol. 2004;55:663–77.Merrow SB, Hopp RJ. Storage effects on winter squashes. Associations between the sugar and starch content of and the degree of preference for winter squashes. J Agric Food Chem. 1961;9:321–6.Berg JM, Tymoczko JL, Stryer L. Carbohydrates. In: Freeman WH, editor. Biochemistry. 5th ed. New York: W H Freeman; 2002.Prabhakar V, Löttgert T, Gigolashvili T, Bell K, Flügge UI, Häusler RE. Molecular and functional characterization of the plastid-localized phosphoenolpyruvate enolase (ENO1) from Arabidopsis thaliana. FEBS Lett. 2009;583(6):983–91.Rius SP, Casati P, Iglesias AA, Gomez-Casati DF. Characterization of Arabidopsis lines deficient in GAPC-1, a cytosolic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase. Plant Physiol. 2008;148(3):1655–67.Van der Linde K, Gutsche N, Leffers HM, Lindermayr C, Müller B, Holtgrefe S, et al. Regulation of plant cytosolic aldolase functions by redox-modifications. Plant Physiol Biochem. 2011;49(9):946–57.Lim H, Cho MH, Jeon JS, Bhoo SH, Kwon YK, Hahn TR. Altered expression of pyrophosphate: fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cells. 2009;27(6):641–9.Baud S, Wuillème S, Dubreucq B, De Almeida A, Vuagnat C, Lepiniec L, et al. Function of plastidial pyruvate kinases in seeds of Arabidopsis thaliana. Plant J. 2007;52:405–19.De Jong M, Mariani C, Vriezen WH. The role of auxin and gibberellin in tomato fruit set. J Exp Bot. 2009;60(5):1523–32.Martínez C, Manzano S, Megías Z, Garrido D, Picó B, Jamilena M. Involvement of ethylene biosynthesis and signalling in fruit set and early fruit development in zucchini squash (Cucurbita pepo L.). BMC Plant Biol. 2013;13:139.Serrani JC, Fos M, Atarés A, Garcia-martinez JL. Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv. micro-tom of tomato. J Plant Growth Regul. 2007;26:211–21.Mapelli S. Changes in cytokinin in the fruits of parthenocarpic and normal tomatoes. Plant Sci Lett. 1981;22:227–33.Ulmasov T, Hagen G, Guilfoyle TJ. Activation and repression of transcription by auxin-response factors. Proc Natl Acad Sci U S A. 1999;96:5844–9.Ulmasov T, Hagen G, Guilfoyle TJ. Dimerization and DNA binding of auxin response factors. Plant J. 1999;19:309–19.Tiwari SB, Hagen G, Guilfoyle TJ. Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell. 2004;16:533–43.Switzenberg JA, Beaudry RM, Grumet R. Effect of CRC:: etr1-1 transgene expression on ethylene production, sex expression, fruit set and fruit ripening in transgenic melon (Cucumis melo L.). Transgenic Res. 2015;24(3):497-507.Nitsch LM, Oplaat C, Feron R, Ma Q, Wolters-Arts M, Hedden P, et al. Abscisic acid levels in tomato ovaries are regulated by LeNCED1 and SlCYP707A1. Planta. 2009;229(6):1335–46.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-seq. Nat Methods. 2008;5(7):621–8.Robinson MD, McCarthy DJ, Smyth GK. Edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2008;26(1):139–40.Raza K, Mishra A. A novel anticlustering filtering algorithm for the prediction of genes as a drug target. Am J Bio Engi. 2012;2(5):206–11.Van Iterson M, Boer JM, Menezes RX. Filtering, FDR and power. BMCBioinformatics. 2010;11:450.Conesa A, Götz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 2015. https://doi.org/10.1002/dvg.22877 .Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL. Nucleic Acids Res. 2000;28(1):45–8.Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.Wyatt LE, Strickler SR, Mueller LA, Mazourek M. An acorn squash (Cucurbita pepo ssp. ovifera) fruit and seed transcriptome as a resource for the study of fruit traits in Cucurbita. Hortic Res. 2015;2:14070. https://doi.org/10.1038/hortres.2014.70 .Zhang A, Ren GA, Sun YA, Guo H, Zhang SA, Zhang FA, et al. A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC Genomics. 2015;16:1101.Finn RD, Attwood TK, Babbit AB, Bork P, Bridge AJ, Chang HY. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. https://doi.org/10.1093/nar/gkw1107 .Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Sherlock G. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:480–4

    Bordetella pertussis Infection Exacerbates Influenza Virus Infection through Pertussis Toxin-Mediated Suppression of Innate Immunity

    Get PDF
    Pertussis (whooping cough) is frequently complicated by concomitant infections with respiratory viruses. Here we report the effect of Bordetella pertussis infection on subsequent influenza virus (PR8) infection in mouse models and the role of pertussis toxin (PT) in this effect. BALB/c mice infected with a wild-type strain of B. pertussis (WT) and subsequently (up to 14 days later) infected with PR8 had significantly increased pulmonary viral titers, lung pathology and mortality compared to mice similarly infected with a PT-deficient mutant strain (ΔPT) and PR8. Substitution of WT infection by intranasal treatment with purified active PT was sufficient to replicate the exacerbating effects on PR8 infection in BALB/c and C57/BL6 mice, but the effects of PT were lost when toxin was administered 24 h after virus inoculation. PT had no effect on virus titers in primary cultures of murine tracheal epithelial cells (mTECs) in vitro, suggesting the toxin targets an early immune response to increase viral titers in the mouse model. However, type I interferon responses were not affected by PT. Whole genome microarray analysis of gene expression in lung tissue from PT-treated and control PR8-infected mice at 12 and 36 h post-virus inoculation revealed that PT treatment suppressed numerous genes associated with communication between innate and adaptive immune responses. In mice depleted of alveolar macrophages, increase of pulmonary viral titers by PT treatment was lost. PT also suppressed levels of IL-1β, IL-12, IFN-γ, IL-6, KC, MCP-1 and TNF-α in the airways after PR8 infection. Furthermore PT treatment inhibited early recruitment of neutrophils and NK cells to the airways. Together these findings demonstrate that infection with B. pertussis through PT activity predisposes the host to exacerbated influenza infection by countering protective innate immune responses that control virus titers

    A Single-Step Sequencing Method for the Identification of Mycobacterium tuberculosis Complex Species

    Get PDF
    The Mycobacterium tuberculosis complex (MTC) comprises several closely related species responsible for strictly human and zoonotic tuberculosis. Some of the species are restricted to Africa and were responsible for the high prevalence of tuberculosis. However, their identification at species level is difficult and expansive. Accurate species identification of all members is warranted in order to distinguish between strict human and zoonotic tuberculosis, to trace source exposure during epidemiological studies, and for the appropriate treatment of patients. In this paper, the Exact Tandem Repeat D (ETR-D) intergenic region was investigated in order to distinguish MTC species. The ETR-D sequencing unambiguously identified MTC species type strain except M. pinnipedii and M. microti, and the results agreed with phenotypic and molecular identification. This finding offers a new tool for the rapid and accurate identification of MTC species in a single sequencing reaction, replacing the current time-consuming polyphasic approach. Its use could assist public health interventions and aid in the control of zoonotic transmission in African countries, and could be of particular interest with the current emergence of multidrug-resistant and extended-resistance isolates

    Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors

    Get PDF
    The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes
    corecore