7 research outputs found

    Radiotherapy for pelvic nodal recurrences after radical prostatectomy: patient selection in clinical practice.

    Get PDF
    There is no general consensus on the optimal treatment for prostate cancer (PC) patients with intrapelvic nodal oligorecurrences after radical prostatectomy. Besides androgen deprivation therapy (ADT) as standard of care, both elective nodal radiotherapy (ENRT) and stereotactic body radiotherapy (SBRT) as well as salvage lymph node dissection (sLND) are common treatment options. The aim of our study was to assess decision making and practice patterns for salvage radiotherapy (RT) in this setting. Treatment recommendations from 14 Swiss radiation oncology centers were collected and converted into decision trees. An iterative process using the objective consensus methodology was applied to assess differences and consensus. PSMA PET/CT was recommended by 93% of the centers as restaging modality. For unfit patients defined by age, comorbidities or low performance status, androgen deprivation therapy (ADT) alone was recommended by more than 70%. For fit patients with unfavorable tumor characteristics such as short prostate-specific antigen (PSA) doubling time or initial high-risk disease, the majority of the centers (57-71%) recommended ENRT + ADT for 1-4 lesions. For fit patients with favorable tumor characteristics, there were low levels of consensus and a wide variety of recommendations. For 1-4 nodal lesions, focal SBRT was offered by 64% of the centers, most commonly as a 5-fraction course. As an alternative to ADT, ENRT or SBRT for pelvic nodal oligorecurrences of PC are commonly offered to selected patients, with large treatment variations between centers. The exact number of lymph nodes had a major impact on treatment selection

    Genomic Classifiers in Personalized Prostate Cancer Radiation Therapy Approaches: A Systematic Review and Future Perspectives Based on International Consensus

    No full text
    International audienceCurrent risk-stratification systems for prostate cancer (PCa) do not sufficiently reflect the disease heterogeneity. Genomic classifiers (GC) enable improved risk stratification after surgery, but less data exist for patients treated with definitive radiation therapy (RT) or RT in oligo-/metastatic disease stages. To guide future perspectives of GCs for RT, we conducted (1) a systematic review on the evidence of GCs for patients treated with RT and (2) a survey of experts using the Delphi method, addressing the role of GCs in personalized treatments to identify relevant fields of future clinical and translational research. We performed a systematic review and screened ongoing clinical trials on ClinicalTrials.gov. Based on these results, a multidisciplinary international team of experts received an adapted Delphi method survey. Thirty-one and 30 experts answered round 1 and round 2, respectively. Questions with ≥75% agreement were considered relevant and included in the qualitative synthesis. Evidence for GCs as predictive biomarkers is mainly available to the postoperative RT setting. Validation of GCs as prognostic markers in the definitive RT setting is emerging. Experts used GCs in patients with PCa with extensive metastases (30%), in postoperative settings (27%), and in newly diagnosed PCa (23%). Forty-seven percent of experts do not currently use GCs in clinical practice. Expert consensus demonstrates that GCs are promising tools to improve risk-stratification in primary and oligo-/metastatic patients in addition to existing classifications. Experts were convinced that GCs might guide treatment decisions in terms of RT-field definition and intensification/deintensification in various disease stages. This work confirms the value of GCs and the promising evidence of GC utility in the setting of RT. Additional studies of GCs as prognostic biomarkers are anticipated and form the basis for future studies addressing predictive capabilities of GCs to optimize RT and systemic therapy. The expert consensus points out future directions for GC research in the management of PCa

    STRUCTURAL ASPECT OF PLATINUM COORDINATION COMPOUNDS: PART III. MONOMERIC SQUARE PLANAR (Pt A2XY AND PtABXY) AND TRIGONAL BIPYRAMIDAL PtII COORDINATION COMPOUNDS

    No full text

    Observation of Gravitational Waves from the Coalescence of a 2.54.5 M2.5-4.5~M_\odot Compact Object and a Neutron Star

    No full text
    International audienceWe report the observation of a coalescing compact binary with component masses 2.54.5 M2.5-4.5~M_\odot and 1.22.0 M1.2-2.0~M_\odot (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO-Virgo-KAGRA detector network on 2023 May 29 by the LIGO Livingston Observatory. The primary component of the source has a mass less than 5 M5~M_\odot at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We estimate a merger rate density of 5547+127 Gpc3yr155^{+127}_{-47}~\text{Gpc}^{-3}\,\text{yr}^{-1} for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star-black hole merger, GW230529_181500-like sources constitute about 60% of the total merger rate inferred for neutron star-black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star-black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Literatur

    No full text
    corecore