48 research outputs found

    Lesiones por bayoneta en la Morella carlista (s. XIX)

    Full text link
    X Congreso Nacional de Paleopatología. Univesidad Autónoma de Madrid, septiembre de 200

    Is immunotherapy here to stay in multiple myeloma?

    Get PDF
    Immune escape and impaired immune surveillance have been identified as emerging hallmarks of cancer.1 Multiple myeloma represents a genuine example of disrupted immune surveillance characterized by: impaired antibody production, deregulation of the T and natural killer cell compartment, disruption of antigen presentation machinery, upregulation of inhibitory surface ligands, and recruitment of immunosuppressive cells. Although the potential value of immunotherapeutic interventions had a clear antecedent in the graft-versus-myeloma effect induced by allogeneic stem cell transplant and donor lymphocyte infusions, it is only recently that this field has faced a real revolution. In this review we discuss the current results obtained with immune approaches in patients with multiple myeloma that have placed this disease under the scope of immuno-oncology, bringing new therapeutic opportunities for the treatment of multiple myeloma patients

    Spanish Cell Therapy Network (TerCel) : 15 years of successful collaborative translational research

    Get PDF
    In the current article we summarize the 15-year experience of the Spanish Cell Therapy Network (TerCel), a successful collaborative public initiative funded by the Spanish government for the support of nationwide translational research in this important area. Thirty-two research groups organized in three programs devoted to cardiovascular, neurodegenerative and immune-inflammatory diseases, respectively, currently form the network. Each program has three working packages focused on basic science, pre-clinical studies and clinical application. TerCel has contributed during this period to boost the translational research in cell therapy in Spain, setting up a network of Good Manufacturing Practice-certified cell manufacturing facilities- and increasing the number of translational research projects, publications, patents and clinical trials of the participating groups, especially those in collaboration. TerCel pays particular attention to the public-private collaboration, which, for instance, has led to the development of the first allogeneic cell therapy product approved by the European Medicines Agency, Darvadstrocel. The current collaborative work is focused on the development of multicenter phase 2 and 3 trials that could translate these therapies to clinical practice for the benefit of patients

    One-step in vitro generation of ETV2-null pig embryos

    Get PDF
    Each year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed. As endothelial cells (ECs) play a critical role in xenotransplantation rejection in every organ, we aimed to produce hematoendothelial-disabled pig embryos targeting the master transcription factor ETV2 via CRISPR-Cas9-mediated genome modification. In this study, we designed five different guide RNAs (gRNAs) against the DNA-binding domain of the porcine ETV2 gene, which were tested on porcine fibroblasts in vitro. Four out of five guides showed cleavage capacity and, subsequently, these four guides were microinjected individually as ribonucleoprotein complexes (RNPs) into one-cell-stage porcine embryos. Next, we combined the two gRNAs that showed the highest targeting efficiency and microinjected them at higher concentrations. Under these conditions, we significantly improved the rate of biallelic mutation. Hence, here, we describe an efficient one-step method for the generation of hematoendothelial-disabled pig embryos via CRISPR-Cas9 microinjection in zygotes. This model could be used in experimentation related to the in vivo generation of humanized organs

    Preclinical Evaluation of the Safety and Immunological Action of Allogeneic ADSC-Collagen Scaffolds in the Treatment of Chronic Ischemic Cardiomyopathy

    Get PDF
    The use of allogeneic adipose-derived mesenchymal stromal cells (alloADSCs) represents an attractive approach for treating myocardial infarction (MI). Furthermore, adding a natural support improves alloADSCs engraftment and survival in heart tissues, leading to a greater therapeutic effect. We aimed to examine the safety and immunological reaction induced by epicardial implantation of a clinical-grade collagen scaffold (CS) seeded with alloADSCs for its future application in humans. Thus, cellularized scaffolds were myocardially or subcutaneously implanted in immunosuppressed rodent models. The toxicological parameters were not significantly altered, and tumor formation was not found over the short or long term. Furthermore, biodistribution analyses in the infarcted immunocompetent rats displayed cell engraftment in the myocardium but no migration to other organs. The immunogenicity of alloADSC-CS was also evaluated in a preclinical porcine model of chronic MI; no significant humoral or cellular alloreactive responses were found. Moreover, CS cellularized with human ADSCs cocultured with human allogeneic immune cells produced no alloreactive response. Interestingly, alloADSC-CS significantly inhibited lymphocyte responses, confirming its immunomodulatory action. Thus, alloADSC-CS is likely safe and does not elicit any alloreactive immunological response in the host. Moreover, it exerts an immunomodulatory action, which supports its translation to a clinical setting

    Supplementary Figure S1 from Biomarkers of Efficacy and Safety of the Academic BCMA-CART ARI0002h for the Treatment of Refractory Multiple Myeloma [Dataset]

    Get PDF
    B-cell maturation antigen (BCMA)-chimeric antigen receptor T-cells (CART) improve results obtained with conventional therapy in the treatment of relapsed/refractory multiple myeloma. However, the high demand and expensive costs associated with CART therapy might prove unsustainable for health systems. Academic CARTs could potentially overcome these issues. Moreover, response biomarkers and resistance mechanisms need to be identified and addressed to improve efficacy and patient selection. Here, we present clinical and ancillary results of the 60 patients treated with the academic BCMA-CART, ARI0002h, in the CARTBCMA-HCB-01 trial. We collected apheresis, final product, peripheral blood and bone marrow samples before and after infusion. We assessed BCMA, T-cell subsets, CART kinetics and antibodies, B-cell aplasia, cytokines, and measurable residual disease by next-generation flow cytometry, and correlated these to clinical outcomes. At cut-off date March 17, 2023, with a median follow-up of 23.1 months (95% CI, 9.2–37.1), overall response rate in the first 3 months was 95% [95% confidence interval (CI), 89.5–100]; cytokine release syndrome (CRS) was observed in 90% of patients (5% grades ≥3) and grade 1 immune effector cell-associated neurotoxicity syndrome was reported in 2 patients (3%). Median progression-free survival was 15.8 months (95% CI, 11.5–22.4). Surface BCMA was not predictive of response or survival, but soluble BCMA correlated with worse clinical outcomes and CRS severity. Activation marker HLA-DR in the apheresis was associated with longer progression-free survival and increased exhaustion markers correlated with poorer outcomes. ARI0002h kinetics and loss of B-cell aplasia were not predictive of relapse. Despite deep and sustained responses achieved with ARI0002h, we identified several biomarkers that correlate with poor outcomes.Instituto de Salud Carlos III (ISCIII) 'la Caixa' Foundation ('la Caixa') Fundación Científica Asociación Española Contra el Cáncer (AECC)Peer reviewe

    CAR T-Cells in Multiple Myeloma Are Ready for Prime Time

    No full text
    The survival of patients with multiple myeloma (MM) has been dramatically improved in the last decade thanks to the incorporation of second-generation proteasome inhibitors (PI), immunomodulatory drugs (IMID), and, more recently, anti-CD38 monoclonal antibodies (MoAb). Nevertheless, still, a major proportion of MM patients will relapse, underscoring the need for new therapies in this disease. Moreover, survival in patients failing the current standard of care regimens (including PI, IMIDs, and anti-CD38 MoAb), which is now defined as triple-class refractory, remains dismal, and new drugs with different mechanism of action are needed. B-cell maturation antigen (BCMA)-targeted therapies and in particular chimeric antigen receptor T cell (CAR T-cell) treatment have emerged as promising platforms to overcome refractoriness to conventional drugs. In this manuscript, we review the current available data regarding CAR T-cell therapy for MM, with a special focus on target selection, clinical results, limitations, and future strategies
    corecore