10 research outputs found

    Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale

    Get PDF
    The mutable collagenous tissue (MCT) of echinoderms (e.g., sea cucumbers and starfish) is a remarkable example of a biological material that has the unique attribute, among collagenous tissues, of being able to rapidly change its stiffness and extensibility under neural control. However, the mechanisms of MCT have not been characterized at the nanoscale. Using synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar structure during in situ tensile testing of sea cucumber dermis, we investigate the ultrastructural mechanics of MCT by measuring fibril strain at different chemically induced mechanical states. By measuring a variable interfibrillar stiffness (E(IF)), the mechanism of mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. Understanding the mechanisms of MCT quantitatively may have applications in development of new types of mechanically tunable biomaterials

    Strikingly Different Roles of SARS-CoV-2 Fusion Peptides Uncovered by Neutron Scattering.

    Get PDF
    Funder: National Collaborative Research Infrastructure Strategy (NCRIS)Funder: ANR/NSF-PIREFunder: Science and Technology Facilities CouncilFunder: Institut Laue LangevinCoronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed

    Long-Range Electrostatic Colloidal Interactions and Specific Ion Effects in Deep Eutectic Solvents

    No full text
    While the traditional consensus dictates that high ion concentrations lead to negligible long-range electrostatic interactions, we demonstrate that electrostatic correlations prevail in deep eutectic solvents where intrinsic ion concentrations often surpass 2.5 M. Here we present an investigation of intermicellar interactions in 1:2 choline chloride:glycerol and 1:2 choline bromide:glycerol using small-angle neutron scattering. Our results show that long-range electrostatic repulsions between charged colloidal particles occur in these solvents. Interestingly, micelle morphology and electrostatic interactions are modulated by specific counterion condensation at the micelle interface despite the exceedingly high concentration of the native halide from the solvent. This modulation follows the trends described by the Hofmeister series for specific ion effects. The results are rationalized in terms of predominant ion-ion correlations, which explain the reduction in the effective ionic strength of the continuum and the observed specific ion effects

    Probing the effect of the capping polyelectrolyte on the internal structure of Layer-by-Layer decorated nanoliposomes

    No full text
    [Hypothesis] The internal organization of polyelectrolyte layers deposited on colloidal templates plays a very important role for the potential applications of these systems as capsules for drug delivery purposes.[Experiments] The mutual arrangement of oppositely charged polyelectrolyte layers upon their deposition on positively charged liposomes has been studied by combining up three different scattering techniques and Electronic Spin Resonance, which has provided information about the inter-layer interactions and their effect on the final structure of the capsules.[Findings] The sequential deposition of oppositely charged polyelectrolytes on the external leaflet of positively charged liposomes allows modulating the organization of the obtained supramolecular structures, impacting the packing and rigidity of the obtained capsules due to the change of the ionic cross-linking of the multi-layered film as a result of the specific charge of the last deposited layer. The possibility to modulate the properties of the LbL capsules by tuning the characteristics of the last deposited layers offers a very interesting route for the design of materials for encapsulation purposes with their properties controlled almost at will by changing the number of deposited layers and their chemistry.This work was funded by MICINN (Spain) under grant PID2019-106557 GB-C21 and by E.U. on the framework of the European Innovative Training Network-Marie Sklodowska-Curie Action NanoPaInt (grant agreement 955612).Peer reviewe

    Probing the effect of the capping polyelectrolyte on the internal structure of Layer-by-Layer decorated nanoliposomes

    No full text
    MICINNUnión EuropeaILLDepto. de Química FísicaFac. de Ciencias QuímicasInstituto Pluridisciplinar (IP)TRUEpu
    corecore