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Abstract  12 

The mutable collagenous tissue (MCT) of echinoderms (e.g. sea cucumbers and starfish) is a 13 

remarkable example of a biological material that has the unique attribute, among collagenous 14 

tissues, of being able to rapidly change its stiffness and extensibility under neural control. 15 

However, the mechanisms of MCT have not been characterised at the nanoscale. Using 16 

synchrotron small-angle X-ray diffraction to probe time-dependent changes in fibrillar 17 

structure during in situ tensile testing of sea cucumber dermis, we investigate the 18 

ultrastructural mechanics of MCT by measuring fibril strain at different chemically-induced 19 

mechanical states. By measuring a variable interfibrillar stiffness (EIF), the mechanism of 20 

mutability at the nanoscale can be demonstrated directly. A model of stiffness modulation via 21 

enhanced fibrillar recruitment is developed to explain the biophysical mechanisms of MCT. 22 

Understanding the mechanisms of MCT quantitatively may have applications in development 23 

of new types of mechanically tuneable biomaterials. 24 
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Significance statement: 32 

 33 

Collagen plays crucial biomechanical roles in a wide array of animal tissues, but its 34 

mechanical properties remain largely static over short timescales. However, echinoderms (sea 35 

cucumbers, starfish) are striking exceptions to this rule, having “mutable collagenous tissue” 36 

with changeable mechanical properties, enabling complex locomotion, postural maintenance, 37 

defence and reproductive strategies. Using a high resolution X-ray probe which measures 38 

how the building blocks – fibrils – of echinoderm connective tissue stretch, slide or reorient 39 

in real time, we show that sea cucumbers achieve this remarkable property by changing the 40 

stiffness of the matrix between individual fibrils, rather than the properties of the fibrils 41 

themselves.  Understanding the mechanisms of mutability in this unique tissue may help 42 

design novel mechanically tuneable synthetic biomaterials. 43 

 44 

Introduction 45 

 46 

The mechanical properties of biological tissues are usually optimized to operate within 47 

specific physiological loading and strain ranges (1, 2). With the exception of the common 48 

phenomenon of strain stiffening that occurs during mechanical loading (3), material-level 49 

changes in the overall mechanical properties of tissues typically occur slowly, driven by 50 

growth, remodelling or ageing (4). The molecular level mechanisms underpinning these 51 

changes often involve permanent, irreversible changes, including covalent crosslinking via 52 

disulphide bridges in tendon (5), formation of metal-ion/protein complexes (6), or 53 

replacement of water with an inorganic phase as in biomineralization (7), although 54 

viscoelastic mechanical responses may involve transient cross-linking (8). In contrast, 55 

changes in the mechanical properties of animal tissues that occur actively and reversibly 56 

within a few seconds are canonically mediated by ATP-dependent molecular motors, as in 57 

muscle (9). A notable exception is the mutable collagenous tissue (MCT) of echinoderms 58 

(e.g. starfish, sea urchins, sea cucumbers), which undergoes rapid changes in stiffness under 59 

the control of the nervous system via ATP-independent mechanisms (10-12). MCT is 60 

ubiquitous in echinoderms (12); for example in the dermis (skin) of sea cucumbers (13, 14), 61 

the compass depressor ligament (CDL) of sea-urchins (15-17), and in the arms of feather 62 

stars (18). The presence of MCT enables functionally diverse behaviours; for example in 63 
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starfish, MCT enables body wall stiffening during feeding on prey and it also enables 64 

irreversible body wall softening prior to arm autotomy as a defence against predation (12). 65 

Thus, MCT represents an evolutionary adaptation of collagenous tissue to change mechanical 66 

properties dynamically, whilst in other phyla collagenous tissues largely act as passive 67 

mechanical springs. The benefits of MCT also include a much lower energy expenditure (19) 68 

compared with muscle tissue and the presence of MCT is considered to have been a major 69 

factor in the evolutionary success and ecological diversity of echinoderms (reviewed in 70 

Barbaglio et al (20)). 71 

 72 

The initial identification of connective tissue of echinoderms as having mechanically unusual 73 

properties – illustrated by its denotation as “catch” connective tissue – was through the 74 

observed stiffening and softening response of such tissues to sea water of different ionic 75 

compositions, as well as neurotransmitters (e.g. acetylcholine) (14) and drugs (e.g. cocaine) 76 

(21). Such chemical means to induce mutability in MCT remain a convenient and 77 

reproducible method to induce mechanically altered states (15, 22, 23). Specifically, previous 78 

studies demonstrated that alteration of extracellular Ca2+ and K+ levels modulates the 79 

stiffness of living tissues in sea urchin spine ligaments (14, 24-28), holothurian dermis (13, 80 

22, 29, 30) and starfish (30). Increased K+  concentration increases the stiffness of these 81 

particular examples of MCT, while decreased Ca2+ concentration lowers stiffness, when 82 

compared to artificial sea water (ASW) as a reference solution. The changes induced by these 83 

chemical methods are within the same order of magnitude as physiologically relevant 84 

mechanical changes occurring in MCT in vivo: under mechanical stimulation (pressing the 85 

tissue by hand), starfish body wall MCT stiffens by a factor of ~3.3 (30), while  increasing 86 

K+ concentration leads to an increase of ~6.1 (30).  Conversely, the reduction of stiffness in 87 

calcium free artificial sea water is considerable (31), which is comparable to the reduction to 88 

zero in the extreme case of limb autotomy where the tissue disintegrates structurally (32). 89 

 90 

The unusual mechanical properties of MCT must arise from the micro- and ultrastructure of 91 

this tissue, which shows both commonalities with, as well as some clear differences from, the 92 

more familiar vertebrate collagenous tissues such as skin, tendon and bone. At the molecular 93 

level, the collagen of sea cucumber MCT is different from heterotrimeric vertebrate type I 94 

fibrillar collagen, consisting of homotrimers with three α1 polypeptide chains (12). These 95 

collagen molecules aggregate into discontinuous spindle-shaped collagen fibrils with a mean 96 
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diameter of ~17 nm (33). Proteoglycans are bound to the fibrillar surfaces, which along with 97 

non-collagenous proteins such as tensilin, stiparin, softenin and fibrosurfin comprise the 98 

interfibrillar matrix (34-36). Together with fibrillin-rich microfibrils (34) the fibrillar 99 

collagen network comprises the bulk of the extracellular matrix (ECM) of MCT. Dispersed in 100 

this ECM are clusters of juxtaligamental cells (JLCs) (12, 19, 24, 28, 29) (15) (as seen from 101 

transmission-electron and light microscopy), which are MCT-effector cells that are under 102 

neural control (12, 15). Furthermore, it is the innervation of MCT that is a key distinction 103 

between echinoderm and vertebrate collagenous tissues (15). 104 

 105 

Initial hypotheses about the ultrastructural mechanism enabling the mechanical mutability 106 

described above focused on ion-mediated creation of physical crosslinks between fibrils and 107 

within the interfibrillar matrix in the ECM(11, 37). Divalent calcium ions were proposed to 108 

be especially effective in increasing interfibrillar matrix stiffness, and their depletion in Ca2+-109 

free sea water solutions was believed to be a major reason for the reduced stiffness. However, 110 

this hypothesis was disproved when cell-lysed MCT showed no mechanical mutability in the 111 

presence of such solutions (38). It is therefore believed that the ionic treatments directly 112 

affect cellular secretion pathways in the JLCs, inducing release of proteins that alter 113 

interfibrillar binding, thus changing the stiffness of the tissue(12). Several such proteins, 114 

including tensilin, softenin and novel stiffening factor (NSF) have been identified (31, 34, 35, 115 

39, 40). It is believed that the JLCs secrete such effector proteins as a result of external 116 

stimuli (such as touch, aggressive attack, or alteration in the ionic strength of the sea water 117 

around the animal), thereby changing the stiffness of the tissue. Biochemical evidence to 118 

support this hypothesis includes the structural similarity of some of these proteins to the 119 

tissue inhibitors of matrix metalloproteinases (TIMPs) found in vertebrates (41). Consistent 120 

with this notion, it has also been suggested that cysteine-rich sea urchin fibrillar domains 121 

(SURFs), found so far in the sea urchin collagen 2α and 5α N-propeptides, as well as 122 

fibrosurfin (an interfibrillar protein) (36, 42), play a role in enabling mutability. The 2α N-123 

propeptides and fibrosurfin co-localise on collagen fibril surfaces in adult sea urchins. 124 

However, despite this considerable level of biochemical insight into MCT (12), the 125 

biophysical mechanisms by which the alteration in mechanics is mediated by the 126 

nanostructure – whether at the fibrillar or intrafibrillar level – are still not completely 127 

understood. 128 

 129 
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Techniques used to correlate ultrastructure with mechanics have been by necessity largely 130 

static and indirect, including imaging tissue after alteration of mechanical state with 131 

techniques like transmission electron microscopy (15). These introduce unavoidable artefacts 132 

from sample preparation and do not measure the changes as they occur in real-time. The use 133 

of in situ synchrotron X-ray diffraction to provide molecular- and supramolecular level 134 

images of the ultrastructural conformation during alteration of the mechanical state of MCT 135 

is a direct way to overcome these limitations (43-46). The axial periodicity of electron 136 

density along the long axis of collagen fibrils (47), with a repeat distance of D~65-67 nm, 137 

leads to Bragg diffraction peaks in X-ray scattering in the small-wavevector domain (< 5 nm-138 

1) characteristic of small angle X-ray diffraction (SAXD) (47). Shifts in these peaks, as would 139 

be induced by mechanical loading or ionic treatments, are therefore a measure of the 140 

nanoscale fibril strain as demonstrated for vertebrate tissues (43-45, 48, 49). By combining 141 

micromechanics with in situ small-angle X-ray scattering, it has been possible to shed light 142 

on the fundamental ultrastructural mechanisms enabling viscoelasticity, toughness and force 143 

generation in vertebrate tissues ranging from tendon(50), bone (46, 48), aorta (51) to muscle 144 

(52), as well as more unusual examples of biological optimization such as armoured fish 145 

scales (45). Using SAXD, it was found that in cross-link deficient fibrils, increased molecular 146 

slippage led to larger fibril strains, compared to normal collagen fibrils (50), that high 147 

toughness of antler bone was due to inorganic/organic friction at the intrafibrillar level (43), 148 

and that fibrillar reorientation blunted crack propagation in skin (53), among other examples. 149 

 150 

When combined with high-intensity synchrotron X-ray sources, time-resolved SAXD with in 151 

situ micromechanical loading could be employed to quantify the fibrillar deformation 152 

mechanisms of MCT in various states of mechanical mutability, thus clarifying the 153 

biophysical mechanisms enabling this remarkable behaviour. Here, we apply these techniques 154 

to the sea cucumber dermis as a model system (Fig. 1). Understanding the molecular 155 

mechanisms enabling mutability may have applications in developing dynamic biomaterials, 156 

systems capable of changing their mechanical properties and the design of mechanically 157 

tuneable implants. The adaptive mechanical properties in MCT could, for example, provide 158 

insight into the repair of connective tissue pathologies in soft tissue, such as therapy in tendon 159 

or ligament weakening resulting from surgery or immobilisation (12), the design of implants 160 

capable of generating active forces, and in the area of neural implants where variable stiffness 161 

during insertion and implantation have been proposed (54).  162 
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Results 163 

Synchrotron SAXD measurements of fibrillar strain in MCT from sea cucumber dermal 164 

tissue were carried out at beamline ID02 at the European Synchrotron Radiation Facility 165 

(Grenoble, France) as shown in Fig. 2. Prior to testing, tissue specimens were chemically 166 

incubated in artificial sea water (ASW) and two ionically modified solutions of ASW 167 

(potassium rich ASW (KASW) and calcium free ASW (CaF-ASW)) which are known to 168 

induce standard state, stiffening and softening of sea cucumber dermis respectively (22, 37) 169 

(for details see Materials and Methods). The fibril strain εF is the fractional increase in fibril 170 

length (as measured from the shifts in the meridional Bragg peaks in the SAXD pattern of 171 

MCT collagen fibrils), while tissue strain εT is the fractional increase in MCT sample length 172 

and tissue stress σT is the force divided by sample area (See Materials and Methods). 173 

Considering the fibrillar-level strain εF and tissue stress developed in MCT during stretch to 174 

failure tests, it is observed (Fig. 3(a)) that fibrils in tissues with different chemical stimulation 175 

- CaF-ASW, ASW and KASW - show a differing extent of elongation at the same tissue 176 

strain εT. At a given tissue strain, the amount of fibril strain is proportional to the stress taken 177 

up by the fibrils. At a tissue strain εT around 10%, fibrils in KASW-tissue have a much higher 178 

extension of ~0.5% compared to ASW (0.07%). Likewise, the fibril strain for CaF-ASW is 179 

much lower (~0.001%), indicating mainly interfibrillar sliding. The maximum fibril strain 180 

developed in KASW is much larger than in CaF-ASW, and the fibril strain in ASW is in 181 

between that of KASW and CaF-ASW. Fig. 3(b) shows corresponding averaged mean strain-182 

stress curves for body wall tissue in KASW (red), ASW (black) and CaF-ASW (blue). The 183 

averaged macroscopic stress σT with tissue strain T at 40% for KASW-treated (4.08 MPa) 184 

specimens is significantly higher than CaF-ASW (0.13 MPa), while the ASW-treated (0.77 185 

MPa) specimens are in between these extremes. We note that the increase of fibril strain with 186 

applied tissue strain is not completely smooth in all cases, as evidenced by the error bars. 187 

This is most noticeable in the case of KASW-treated tissue, where there are clear local peaks 188 

at ~10 and 30% strain followed by dips. The structural reasons for this behaviour will be 189 

considered further when the model to explain fibrillar deformation is developed in the 190 

Discussion. Further, the variation of the macroscopic tensile stress (at the tissue-level) for the 191 

whole specimen for all treatments (KASW, ASW and CaF-ASW) is much greater compared 192 

to the strain developed at the fibril-level (Fig. 3a), indicating that interfibrillar components of 193 

the extracellular matrix are important in mechanisms of MCT.  194 

 195 
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The differences in Ca2+ or K+ concentrations in CaF-ASW, ASW and KASW led to changes 196 

of maximum tangent modulus and maximum tissue stress (Fig. 4). Ca-FASW-treated 197 

(0.690.59 MPa) samples had ~80% lower maximum tangent modulus compared to ASW 198 

(3.230.40 MPa), while the maximum tangent modulus for KASW-treated samples (17.27 199 

6.70 MPa) was 4 times larger. Concurrently, the maximum stress of each state is very 200 

different, with the loads borne by CaF-ASW-treated tissue (0.30  0.32 MPa) being much 201 

less (~80 %) compared to ASW-tissue (1.30  0.20 MPa) while KASW-tissue (6.39  0.44 202 

MPa) had maximum stress 4 times higher than the control. Similarly, nanoscale parameters 203 

like fibril strain also show clear differences between treatments (Fig. 4(c) and (d)).  204 

Compared to maximum fibril extension (Fig. 4(c)) developed in KASW (0.94%), fibrils in 205 

CaF-ASW (0.09%) and ASW (0.35%) had a reduced elongation, with ~95% and 80% less 206 

strain respectively. Fig. 4(d) shows the ratio of fibril strain to tissue strain (εF/εT) for the three 207 

states, which is observed to be consistent with Fig. 4(c), showing that stiffened tissue sections 208 

have (F/T) of 0.044, larger than control specimens, whilst softened tissue sections have 209 

almost negligible fibril strain take-up (F/T ~0). The parameter εF/εT will be used to confirm 210 

the modelling results, which will be illustrated later.  211 

 212 

In a complementary manner, we consider the alterations in the fibril orientation distribution 213 

on application of external load. The -parameter, derived from the angular distribution of the 214 

SAXD intensity, is a dimensionless number which is zero when fibrils are distributed at all 215 

angles with equal likelihood, and positive when fibrils are aligned either along one or a 216 

couple of principal directions (See Materials and Methods). A representative plot of the -217 

parameter as a function of tissue strain (Fig. 5(a)) exhibits an initially high value of ~1.3 218 

(corresponding to two main fibril directions equidistant (azimuthally) from the vertical 219 

direction) that is followed by a decrease to a minimum around 20% tissue strain. The initial 220 

two directions correspond to two principal helical fibre pitches along the long axis of the 221 

animal. The initial reduction in the -parameter corresponds to a more random fibril 222 

orientation, as indicated schematically in Fig. 5 (a-c), and represents the stress-induced 223 

breakdown of the two main fibril directions into a single broad distribution centred on the 224 

(vertical) direction of applied tensile load. For tissue strains larger than 20%, the -parameter 225 

increases monotonically with increasing tissue strain, before levelling off near tissue strains 226 

of ~40-50% close to macroscopic failure. The increase of the -parameter represents a 227 

narrowing of the azimuthal width of the initial broad fibril distribution around the direction of 228 
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applied load. The tissue strain at the transition between the reduction of the -parameter and 229 

the subsequent increase is denoted by Tr. The analysis of mean Tr across three groups of 230 

specimens is shown in Fig. 5(d). The results indicate that soft  (CaF-ASW) samples always 231 

have a higher Tr, relative to the control (ASW) and stiffened (KASW) samples, which 232 

implies that the rate of reorientation (from the initial distribution with two main directions to 233 

a random and then highly oriented distribution) is slower for the softened MCT. 234 

Model and Discussion 235 

These experimental results, showing clear alterations in the deformation at the fibrillar level 236 

when MCT is stimulated into its stiff and soft states, can be used to build a simple model that 237 

sheds light on the key biophysical mechanisms enabling mutability (31, 34, 35, 39, 40). Prior 238 

research has proposed, but not directly demonstrated, that certain proteins secreted by JLCs 239 

including tensilin (38, 39), stiparin (34) and NSF (31) act to cross-link the fibrils. A complete 240 

ultrastructural mechanism for MCT mutability has not, however, been quantitatively 241 

established, and each protein appears to only be involved in a specific subset of the 242 

mechanical response, such as in stiffening a compliant specimen back to the reference state 243 

(as is the case for tensilin (38, 39)). At the ultrastructural level, the parallel-packed fibrils and 244 

interfibrillar matrix of MCT can be represented as shown in Fig. 6(a). The covalently cross-245 

linked (α1)3 collagen fibrils are expected to have much greater stiffness (~0.5-2 GPa(55)) 246 

than the interfibrillar matrix (which can be considered a negatively charged hydrated gel 247 

(56)), although precise values for the interfibrillar matrix modulus are unknown. Under 248 

tensile loading, the highly anisotropic fibrillar structure together with the expected stiffness 249 

mismatch between the fibrils and the interfibrillar matrix will lead to a characteristic 250 

inhomogeneous deformation field at the nanoscale. In this deformation field, tensile forces 251 

develop in the fibrils and matrix, and significant shear occurs in the interfibrillar matrix 252 

connecting fibrils (57). The shearing force lines are shown in the insets in Fig. 6(b), and can 253 

be considered as representations of the cross-linking between fibrils proposed previously 254 

(12). Consequently, the fibril strain is only a fraction of the total strain (due to the remaining 255 

shearing strain in the interfibrillar matrix). 256 

 257 

In order to keep the model analytically simple we consider a unidirectional fibre composite; 258 

whilst the initial unstrained MCT shows two main fibril directions around the direction of 259 

stretch (Fig. 5(b)), it is observed that for tissue strains larger than ~20% the fibrils are highly 260 
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aligned to the direction of applied stress and the uniaxial fibril arrangement is expected to be 261 

a good approximation for this region at least. This type of model, denoted a staggered model, 262 

has been proposed before, by us (43) and others (57, 58) for deformation of the ultrastructure 263 

of bone mineralized fibrils, tendon, enamel and dentine (48, 59), where a similar high 264 

stiffness element in tension (e.g. mineral platelet) is effectively in serial-loading with a low 265 

stiffness element loaded in shear (e.g. collagen fibrils). The deformation of the fibril F, shear 266 

of the interfibrillar matrix IF, and tissue level stress σT, among other quantities, have been 267 

calculated from load-balance equations at the nanoscale (43). These lead to expressions for 268 

the fibril to tissue strain ratio, and the tissue modulus ET, in terms of the structural and 269 

constitutive parameters: 270 
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In the equations above, 1 denotes the fibril volume fraction, 1 the fibril aspect ratio, EF the 273 

fibril elastic modulus, EIF the interfibrillar modulus, and IF~0.40 is the ratio between shear 274 

(GIF) and tensile (EIF) modulus of the interfibrillar matrix (GIF=IFEIF)(43); other terms have 275 

been defined earlier in the text. As our scheme enables measurement of deformation at the 276 

fibrillar level concurrently with tissue-level mechanical stress and strain, a parametric 277 

variation of fibril strain and tissue modulus may now be carried out and compared to the 278 

experimental results reported earlier in Fig. 4 and 5. These results are shown in Fig. 6(b) and 279 

discussed below. 280 

 281 

Considering, for the moment, that the collagen fibrils have a constant elastic modulus EF, we 282 

first examine the effects of altering the interfibrillar modulus on the change in tissue stiffness. 283 

Such a scenario corresponds to an alteration in cohesion due to secretion of stiffening factors 284 

such as tensilin, stiparin and NSF. As seen in Equation 2, the increase in tissue stiffness 285 

arises due to both the increased load borne by the interfibrillar matrix (second term on the 286 

right hand side in Equation 2) as well as – much more significantly – the increased stress 287 

borne by the collagen fibril due to the larger shear stress transferred by the interfibrillar 288 

matrix (first term on the right hand side). The stress borne by the collagen fibril is large due 289 

to the large contact surface area between the fibrils and the interfibrillar matrix due, in turn, 290 
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to the large fibril aspect ratio 1. Concurrently with the increase in tissue stiffness, the fibril 291 

strain increases as a fraction of the tissue strain, as larger tensile forces are transferred to the 292 

elastic fibrils with increased fibril strain.  293 

 294 

In order to compare the model predictions with experimental data (Fig. 6(b) and (c)), initial 295 

estimates of some of the unknown parameters need to be made. The length and fibril diameter 296 

distributions for echinoderm collagen fibrils have been estimated previously (33, 60). While 297 

the maximum and minimum values span a wide range, a constant spindle shaped morphology 298 

was reported (33). The most frequent value (mode) in the diameter distribution was ~100 nm 299 

(60), and the length ranged from 50 µm to 1 mm. Using the constant shape of the collagen 300 

fibrils reported previously (33) and the diameter distribution shown in (60) , these values can 301 

be used to estimate the maximal length to be ~120 µm. These lead to an aspect ratio of 302 

~1000. The fibril modulus for individual sea cucumber fibrils isolated from the tissue was 303 

measured to be ~ 500 MPa (55). As described in the Supplementary Information, these values 304 

can be used, together with the experimentally determined values of F/T and ET, to obtain 305 

estimates of fibril volume fraction 1 ~ 0.54 and the interfibrillar modulus EIF ~ 50 × 10-6 306 

MPa (in the ASW-case). The fibril volume fraction will not vary across treatments, but the 307 

interfibrillar modulus will change. With these numerical values, the two trends described 308 

above – increase in both tissue stiffness (ET) as well as in fibril strain ratio F/T with 309 

increasing EIF – are plotted in Fig. 6(b), together with the experimentally measured values for 310 

the softened, control and stiffened groups. Equation 1 is used to calculate interfibrillar 311 

matrix stiffness EIF for each tissue group from measured F/T, which are then plotted 312 

(symbols) together with model curves (lines). In a similar manner, Equation 2 is used to 313 

obtain EIF from measured tissue moduli ET for each group. For consistency of the model, the 314 

two calculated sets of EIF should match, and indeed, it is observed that both methods give 315 

similar values for EIF across the tissue groups.    316 

 317 

In principle, however, there are two distinct ways in which the stiffness of MCT can be 318 

modified: either by the interfibrillar matrix stiffening (as considered above) or by alterations 319 

of the mechanics of the collagen fibrils, possibly by modulation of intrafibrillar cohesion. 320 

These two scenarios – fibrillar versus interfibrillar stiffening – lead to different behaviours at 321 

the fibrillar level. In the fibrillar stiffening case, the fibrillar strain (as a fraction of tissue 322 

strain) will reduce as the tissue stiffens, whilst in the interfibrillar stiffening case, the fibrillar 323 
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strain will increase as the tissue stiffens, as can be seen by combining Equations 1 and 2 to 324 

obtain parametric plots of F/T and ET as functions of EIF and EF. 325 
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In the model, changing the aspect ratio by ±10% leads to a variation of 20 % in both F / T 327 

and ET (Supplementary Information, section 2). In order to conclusively demonstrate 328 

interfibrillar stiffening, and exclude fibrillar stiffening as the key mechanism for mechanical 329 

changes in MCT, the experimental data for F/T and ET are plotted in Fig. 6(c) together with 330 

two sets of three predictive curves from the model. The first set of three curves (solid lines) 331 

corresponds to a continuous increase in interfibrillar modulus (for several discrete values of 332 

fibrillar stiffness), while the second set (dashed lines) corresponds to continuously increasing 333 

fibrillar stiffness for several values of interfibrillar stiffness. It is clearly seen that the 334 

experimental data show an increase in F/T with ET, corresponding to the case of 335 

interfibrillar matrix stiffening.  Further, it is apparent that the mean values lie along the 336 

predicted curve for a collagen fibril modulus EF = 600 MPa, which is close to the value of 337 

500 MPa reported by Eppell et al (55). This finding provides evidence in support of the long-338 

held, but not directly demonstrated, hypothesis that the alteration of MCT mechanical 339 

properties arises due to changes in interactions between fibrils (through changes in the 340 

interfibrillar matrix) rather than alterations in the mechanical properties of the fibrils 341 

themselves (12). 342 

 343 

From the variation of interfibrillar matrix stiffness certain observations can be made. In 344 

MCT, EIF is, even in the stiffest state, ~0.25 kPa - at least 6 orders of magnitude lower than 345 

the stiffness of the fibril ~0.6 GPa. In the state of least stiffness, there is a factor of ~100 346 

reduction in EIF relative to the already low value of 0.25 kPa, to ~5-10 Pa, and the matrix can 347 

be considered a fluid. However, the increased stiffness of MCT in the stiffened state 348 

(necessary for its physiological maintenance of posture or locomotion (12)) is almost entirely 349 

due to the increased fibrillar recruitment to bear stress, and not due to the stress carried in the 350 

interfibrillar matrix. The ratio of the stress in the interfibrillar matrix to that in the fibril can 351 

be calculated from: 352 

 353 

 354 

 355 
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i.e. only ~0.7% of the total stress is borne by the interfibrillar matrix. Under alteration of 356 

mechanical state, the relative increase in fibril stress can be calculated from the change in 357 

fibril strain ratio, via  358 

 359 

 360 

We observe that fibril stress increases by a factor of ~4 (Fig. 4(d)) in the stiff state compared 361 

to the standard state. Conversely, in the softened state, the fibril stress decreased by a factor 362 

of ~10 relative to the standard state. We also note that we have (for simplicity) considered the 363 

interfibrillar matrix to stiffen homogeneously. In practice, there can be local heterogeneities 364 

(both temporal and spatial) in stiffness, possibly due to conformational changes in the non-365 

collagenous proteins, local entanglements and other phenomena. Such heterogeneities would 366 

lead to local increases (or decreases) in interfibrillar stiffness, which would increase (or 367 

decrease) stress transfer between fibrils. Such alterations in stress transfer would explain the 368 

local maxima and minima in the fibril strain measured in stiffened KASW-treated MCT 369 

observed in Fig. 3(a). In this regard, the recent finding of collagen molecular shortening – due 370 

to water content changes – leading to large tensile stresses in tendon may be of relevance 371 

(61).  372 

 373 

These findings shed light on the synergistic action at the nanoscale enabling mutability in 374 

MCT. By itself, the stress in the stiffened (or softened) interfibrillar matrix is by no means 375 

sufficient to account for the change in tissue stiffness. However, due to the large anisotropy 376 

and surface to volume ratio of the fibrils, considerable contact area exists for binding of the 377 

interfibrillar proteins and glycosaminoglycans to the fibrils. Such binding is likely to occur at 378 

the gap-zones (separated by D~65-67 nm) identified previously as putative binding sites for 379 

proteoglycans in collagens (62). As a result, the total stress transferred to the collagen fibrils 380 

is effectively amplified by the anisotropy factor ~1000. Small changes in the mechanical 381 

properties of the interfibrillar matrix are thus amplified to apply considerable stress to the 382 

elastic fibrils, as a consequence of which the fibrils are more effectively recruited to bear 383 

load. Prior biochemical evidence suggests the involvement of proteins like tensilin and NSF 384 

in the stiffening of the matrix (31, 38, 39). It is probable that these proteins physically cross-385 

link to the existing glycosaminoglycans and proteoglycans, which in turn are bound to the 386 

gap-zones in collagen fibrils. It is conjectured that these proteins are acting like a bridge 387 

binding the proteoglycan/GAG sites of two adjacent fibrils together (12, 29). In this manner, 388 
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increased matrix stiffening combined with effective shear load transfer to the fibrils enables 389 

MCT to undergo considerable (by a factor of ~25; Fig. 6(b)) changes in tissue stiffness. The 390 

physical cross-linking process is a time-dependent one (Fig. 1E), most likely due to diffusion 391 

of proteins secreted by the JLCs in between the collagen fibrils, combined with progressive 392 

occupation of binding sites for these proteins in the interfibrillar matrix. This process of 393 

increased interfibrillar stiffening, enabling alteration of mechanical behaviour, is likely to be 394 

a general property of MCT in echinoderms.  395 

Conclusion 396 

In summary, in this first direct measurement of the nanoscale fibrillar deformation 397 

mechanisms of MCT, we have demonstrated that the mutability of mechanical properties in 398 

this unique invertebrate collagenous tissue is achieved solely by interfibrillar matrix cross-399 

linking and un-crosslinking. Increasing interfibrillar cohesion in the mechanically-active state 400 

leads to nearly a 50-fold increase in fibrillar stress, underpinning the transition of MCT from 401 

a soft- to a stiff-state. A greater fibrillar stress recruitment, mediated by shear transfer from 402 

the interfibrillar matrix, leads to an over 20-fold increase in tissue modulus over the timescale 403 

of several seconds. The use of in situ X-ray methods together with mechanical testing has 404 

enabled us to quantify both the material-level mechanisms and the constitutive properties of 405 

the components of MCT as they undergo these changes in real time. The ability of MCT to 406 

undergo such large changes in stiffness with minimal dimensional changes and solely by 407 

increasing fibrillar recruitment highlights the potential of such fibrillar-hydrogel composites 408 

to act as dynamic biomaterials that can change their mechanical state rapidly. Such materials 409 

could find application as new pharmacological agents, while the design of a new class of 410 

mechanically responsive nanocomposites(12) could enable energetically efficient 411 

biomaterials and devices that provide not only structural support but can dynamically adjust 412 

their properties to the external environment for responding to different demands. The 413 

approach opens up several promising further avenues of investigation, e.g. alterations in the 414 

molecular level diffraction patterns would provide combined molecular as well as fibrillar 415 

real-time structural information, the use of novel synthetic peptides mimicking the stiffening 416 

or softening agents in MCT could be tested in situ for efficacy(63). Finally the combination 417 

of experiments with molecular modelling methods would enable us to link mechanisms at the 418 

smallest structural levels to macroscopic behavioural patterns.  419 
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Materials and Methods 420 

Dissection of sea cucumber body wall preparations: 421 

Specimens of the sea cucumbers (Holothuria leucospilota) were obtained from a commercial 422 

wholesaler (Marine Life, Paris, France), and delivered to the synchrotron SAXD beamline (in 423 

tanks of artificial sea water) a few hours prior to use. To prepare sea cucumber samples for 424 

the mechanical testing in different ionic solutions, we followed a protocol similar that used in 425 

previous studies of the mechanics of sea cucumber dermis (19, 64). Specifically, after letting 426 

the sea cucumbers rest for 1 hour in sea water, samples from the white central part of the 427 

body wall dermis (Fig. 1) were prepared. The attached viscera and muscle layers on the 428 

inside were pulled off with forceps, and the pigmented outer dermis was removed using razor 429 

blades, leaving only the collagenous part. Rectangular-shaped collagenous tissue pieces (10-430 

20 mm×1.0mm×1.0mm) were cut out using a specialized construct with twin-razor blades 431 

fixed on either side of a 1 mm thick steel-section, in order to keep the thickness constant to 1 432 

mm. The sectioning was done in the longitudinal direction of the body wall, used for tensile 433 

testing (Fig. 1c-d). While the total length of the sample varied between specimens, the gauge 434 

length was kept constant to 6 mm during the tensile testing (as described in the next section). 435 

Samples were rinsed in artificial seawater (ASW) after sectioning. After the sections were 436 

prepared, and before mechanical testing, all samples were allowed to relax in ASW for 1 437 

hour. Following this, specimens were incubated in ASW (control), high potassium 438 

concentration (stiff; high [K+]) artificial seawater (KASW), or calcium-free artificial seawater 439 

(soft; CaF-ASW) for 1.5 hours. Compositions of these three solutions (ASW, KASW, and 440 

CaF-ASW) followed the protocol described previously by Motokawa (14). As expected, this 441 

procedure resulted in relative elevation and reduction of stiffness for KASW and CaF-ASW 442 

treated dermis, consistent with other studies of chemically treated MCT (30).  All studies 443 

were carried in accordance with the Animals (Scientific Procedures) Act 1986 of the UK, 444 

including revision 2013; invertebrates (except cephalopods) are not considered protected 445 

species under the Act. 446 

In situ mechanical testing with SAXD: 447 

A compact micromechanical tester, designed by our group (43), specialized for holding 448 

biological tissues and capable of being fixed on the sample stage of a synchrotron SAXD 449 

beamline, was used. The tester contains a load cell (100 N rating), with attached amplifier 450 

(RDP Electronics Ltd, UK). Strain is applied by displacement of a DC-motor with encoder 451 
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(M-126.DG, Physik Instrumente, Karlsruhe, Germany). A customized LabVIEW (National 452 

Instruments, UK) interface on a control-PC was used to control the applied tissue strain and 453 

strain rates. Adherence of the sample to the tensile tester grips was improved by using 454 

sandpaper of various grades between the tissue and the grip. The machine compliance of the 455 

tester was measured using a thick steel section. Compliance was found to be negligible 456 

compared to the stiffness of the sea cucumber body wall tissue under investigation. 457 

Engineering tissue strain (εT0) was calculated from the ratio of the displacement of the sample 458 

grips to the unstressed gauge length ~ 6 mm.  As MCT is a soft tissue capable of 459 

considerable elongation, the engineering tissue strain (εT0) was converted into true tissue 460 

strain (ɛT) using ɛT = ln(1+εT0) (See Supplementary Information, section 3)(65). Tissue stress 461 

 was obtained by dividing force by sample area (1.0 mm2). Rate of increase of stress with 462 

tissue strain (tangent modulus ET (65)) was obtained from a linear regression between  and 463 

T with a moving window of ~T = 0.5%.    464 

 465 

Combined microtensile deformation experiments with time-resolved acquisition of SAXD 466 

patterns were carried out at the High Brilliance ID02 beamline at the European Synchrotron 467 

Radiation Facility (ESRF, Grenoble, France). Body wall preparations were mounted in the 468 

microtensile tester immediately after incubation in test solutions.  Samples with gauge 469 

length ~6 mm were stretched to failure at a constant velocity of 0.01 mm/s (corresponding to 470 

a strain rate of ~0.167%/s). Samples were kept hydrated by dropwise addition of the 471 

incubation solution during the test. SAXD patterns were acquired with a FReLoN CCD 472 

detector(66) with a 0.5 second exposure time, using a highly collimated synchrotron X-ray 473 

beam (beam size 20 (height) × 25 (width) μm at sample and detector positions, wavelength λ 474 

= 0. 9951 Å (X-ray energy 12.46 keV) at a sample-to-detector distance of 1006.8 ± 1.0 mm 475 

determined with silver behenate at the sample position. Each SAXD pattern had a resolution 476 

of 2048×2048 pixels and a pixel area of 23.63×23.97 m2. SAXD patterns were collected 477 

continuously up to failure of the specimen, with an interval between acquisitions of ~1.5% 478 

strain. Each SAXD pattern is therefore acquired on a tissue location which is ~6 mm × 0.015 479 

= 90 m shifted from the previous measurement. The beam diameter is much smaller (~1/5th 480 

of this shift) and there is thus no overlap of the beam onto tissue locations across SAXD 481 

measurements. As a result radiation damage, due to multiple exposure of the beam to the 482 

same tissue location, is minimized. Radiation damage of protein assemblies and solutions 483 

occurs via combination of free radicals produced by water photolysis with free radicals from 484 
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the proteins, leading to protein unfolding, aggregation, or breakage (67).Our strategy of 485 

continuous sample movement to avoid repeat exposures of the same point is one of several 486 

successful approaches to minimize radiation damage (67). Other methods, including 487 

continuously replacing the sample (e.g. continuous flow in liquids) or adding radical 488 

scavengers to solutions (assuming no structural consequences) (67), are not applicable in the 489 

case of strain-stressed tissues considered here. Failure of the specimen usually occurred 490 

between 50 and 70% strain. As a result, typically about 40 patterns per sample (60%/1.5% = 491 

40) were acquired. 492 

Determination of fibril strain from SAXD 493 

2D SAXD patterns of sea cucumber body wall collagen were obtained (Fig. 2(b)) and 494 

averaged azimuthally (in the angular plane of the X-ray detector) to obtain the Bragg peaks 495 

arising from the D-periodicity of SAXD fibrils. The azimuthal average of the intensity 496 

provides a 1D intensity profile I(q) (q being the wavevector), which has characteristic Bragg 497 

peaks at integer multiples of 2π/D. The software package Fit2D (68) was used, with the 498 

CAKE/INTEGRATE command, to carry out the integration. The 5th order peak was used for 499 

fitting as it had the strongest peak intensity among the visible Bragg orders, enabling accurate 500 

peak fitting and determination of peak shifts (See Supplementary Information, section 5). To 501 

centre the pattern around the clear 5th order peak at ~0.48 nm-1, inner and outer wavevector 502 

limits of 0.45 nm-1 and 0.50 nm-1, respectively, were used. Subsequently, the selected 5th 503 

order peak was fitted by a Gaussian function with a linear background term to account for the 504 

diffuse intensity scattering: 505 

qII
w

qq
IqI 0100

2

05

05 '
2

1
exp)( 





















 
  Equation 4 506 

Here I05, q05, and w, represent the peak amplitude, peak position and meridional peak width, 507 

respectively (I00 and I’01 are diffuse background terms). The D-period was calculated from 508 

the relation D = 5 × 2π/ q05. The percentage changes in D value at non-zero external force 509 

(relative to the unstressed state) provide the critical fibril strain parameter F. The method 510 

described here has been used extensively by us for vertebrate collagenous tissues, specifically 511 

for bone and tendon (43, 44, 48, 69): 512 
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To obtain the fibril strain ratio F/T for each sample, a linear regression of fibril strain F 514 

versus tissue strain T was carried out (Sigma Plot, Systat Software), and the slope of the 515 

linear regression provided F/T (43, 46, 48, 50). The values of F/T for each sample from the 516 

different treatment groups is given in a Table in Supplementary Information, section 4. 517 

   518 

Determination of fibril orientation measured from SAXD 519 

In a complementary manner to fibril strain, the angular fibril distribution was calculated from 520 

the azimuthal intensity profile I5() of the 5th order Bragg reflection of the collagen D-521 

spacing. The azimuthal profile was calculated by first integrating (using the Fit2D/CAKE 522 

command) the 2D intensity pattern radially in a narrow band of wave-vectors around the peak 523 

position q05 ~ 0.48 nm-1 of the 5th order reflection, i.e. over the wavevector range 0.45 – 0.50 524 

nm-1. The background-corrected azimuthal intensity distribution Icorrected() was calculated by 525 

first averaging the azimuthal intensity profiles in two rings around the 5th order peak position, 526 

and subtracting the averaged intensity from the centre (peak) ring, as described earlier for 527 

bone (70), and is shown in Fig. 2(c1).  528 
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To ensure the full azimuthal width of the peaks was captured, the intensity profile was 530 

calculated over the full circle (0 to 360º). Angular coordinates corresponding to high values 531 

of Icorrected() denote a greater proportion of fibrils along the specified azimuthal angle. The 532 

profile Icorrected() was then fitted to a function with two Gaussian peak profiles, separated by 533 

180 degrees.  534 
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The parameter χ0 defines the main direction of orientation of the fibrils, while 0 is a 536 

parameter characterising the width of the distribution and I0 is an amplitude term 537 

proportional to the total SAXD intensity of the 5th order reflection. It is noted that whilst 538 

applied forces will induce shifts in q05 over the course of the test, these will turn out (shown 539 

in Results) to be sufficiently small such that the same narrow band around the initial peak 540 

position can be used over the entire test.  541 

 542 
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A collagen fibril distribution with a narrow angular width (corresponding to well-oriented 543 

fibrils) is characterized by a low value 0 and twin sharp peaks in Icorrected() above a low 544 

baseline intensity, while a distribution with a wide angular dispersion in fibril orientation is 545 

characterized by high 0 and a nearly constant Icorrected(). We define a dimensionless 546 

parameter , derived from Icorrected(), which can be used to determine if the fibril distribution 547 

is narrow or broad.  548 

 = Std. Dev.( Icorrected()) Mean(Icorrected())Equation 8 549 

It can be seen that an isotropic (wide) fibril angular distribution, corresponding to a nearly 550 

constant Icorrected(), will have ~0, while  will increase as the angular width reduces.  551 
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Figures and Figure Legends 747 

 748 

 749 

Figure 1: Sea cucumber body wall mutable collagenous tissue (MCT). (a) Sea cucumber 750 

Holothuria leucospilota (b) Transverse section of sea cucumber body wall stained using 751 

Masson’s Trichrome method; collagen fibrils appear blue (c) The sheet of body wall after 752 

animal was cut in half along the longitudinal plane. The blue rectangle indicates the 753 

dimensions and location of sectioned specimen, with the long dimension along the 754 

longitudinal axis. (d) View of sectioned sea cucumber dermis including dark outer dermis and 755 
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inner layer, below is the tensile test specimen. Prior to testing, the dark-pigmented outer 756 

dermis as well as the inner layer was removed, leaving only the centre part of the specimen. 757 

(e) Time-dependent change in sea cucumber MCT mechanics induced via ionic treatment. 758 

The peak stress (per cycle) is plotted during strain-controlled cyclic loading of sea cucumber 759 

dermis at 0.3 Hz (to 15% tissue strain), with tissue immersed in ASW until ~290 s, followed 760 

by a change of the immersing solution to KASW (stiffening agent). A clear rise of peak stress 761 

(per cycle) is observed, fitted with a sigmoidal curve as a guide to the eye. Inset figures on 762 

the right show a magnified time-range over a few (seven) cycles, with both maximum and 763 

minimum stress and strain indicated. 764 
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 765 

Figure 2: In situ nanomechanics with synchrotron small angle X-ray diffraction 766 

(SAXD): (a) Experimental configuration: Tensile tester (centre) with MCT specimen 767 

mounted along X-ray beam path in transmission geometry with CCD detector (left). Right 768 
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inset: magnified view of sample in chamber, and incident X-ray beam (right) with SAXD 769 

scattering shown on left. The tensile strain is applied along the vertical direction. Upper right: 770 

Schematic of body wall of sea cucumber shown in Figure 1, with tensile test specimen 771 

sectioned with long axis parallel to the long axis of the animal. Data reduction pipeline: (b1) 772 

a two-dimensional SAXD pattern from collagen fibrils in sea cucumber dermis MCT with 773 

predominant fibril orientation vertical; radial (q) direction indicated. Dotted lines denote the 774 

ring over which the azimuthal averaging of intensity is carried out. (b2) The azimuthally 775 

averaged radial intensity profile I(q) for the pattern in (b1). (c1) The same 2D SAXD pattern 776 

as (b1), with the inner, outer and central rings (i, o and c respectively on the figure) shown 777 

schematically, over which radial averaging of intensity is carried out; azimuthal () direction 778 

indicated. (c2) The radially averaged intensity profile I(). In (b2) and (c2) both experimental 779 

data (open circles) and fits to model functions (solid lines) are shown. (d) Radial intensity 780 

profile I(q) for three levels of applied tissue strain T = 0% (circles), 30% (squares) and 60% 781 

(diamonds), showing the shift of peak position to lower wavevector with increasing strain. (e) 782 

Tissue stress-tissue strain plot for sea cucumber dermis in tension, with circles (black: 0%; 783 

red: 30%; blue: 60% (colour online)) indicating the points from which the I(q) plots in (d) are 784 

shown. (f) Flowchart corresponding to the data reduction steps in (b1-c2) above, with 785 

parameters obtained at each step indicated.  786 
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 788 

Figure 3: Altered fibrillar stress- and strain take-up in ionically-treated MCT. (a) Fibril 789 

strain versus applied tissue strain from ionically treated sections of MCT dermis, measured 790 

from the peak shifts of the 5th order collagen reflections in the SAXD pattern. The rate of 791 

increase of fibril strain with tissue strain (F/T) is proportional to the amount of stress taken 792 
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up by the collagen fibrils. Data from control (ASW): black circles, n=4; stiffened (KASW): 793 

red squares, n=4; and softened (CaF-ASW): blue diamonds, n=3. All samples in each group 794 

are binned according to tissue strain with bin widths of 2.0%; error bars are standard 795 

deviations. Stiffened MCT exhibits a higher rate of increase of fibril strain compared to 796 

control, whilst softened MCT shows essentially no increase in fibril strain. Inset schematics 797 

(i) Fibrils (striated ellipsoids; length LF0) separated by interfibrillar matrix, in unloaded MCT 798 

of length LT0. (ii) In softened MCT (CaF-ASW treated), while the tissue elongates (T>0), the 799 

fibrils do not stretch, but slide in the interfibrillar matrix (F=0). (iii) In stiffened MCT 800 

(KASW treated), there is increased stress transfer to the fibrils, leading to fibrillar stretching 801 

(F>0). (b) Corresponding macroscopic tensile stress/strain curves for the control, stiffened 802 

and softened groups, binned according to tissue strain (error bars: standard deviations), 803 

showing clear differences in tangent modulus and maximum stress achieved.  804 

  805 

Figure 4: Quantified MCT mechanics. (a) Averaged maximum tangent modulus and (b) 806 

maximum stress for control (ASW; black; n=4), stiffened (KASW; red; n=4) and softened 807 

(CaF-ASW; blue; n=3) specimens from MCT dermis; error bars are standard deviations. n 808 

denotes the number of samples in each treatment group. At the tissue level, stiffened MCT 809 

always exhibits remarkably higher mechanical properties compared to the control group, and 810 

for the softened one, the binned maximum tangent modulus and the maximum stress is 811 

almost negligible. At the fibrillar level, the fibril strain (c) and the ratio of the fibril strain to 812 
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tissue strain ((d); the fraction of the deformation taken up at the fibril level) for the stiffened, 813 

control and softened MCT follows the same trend with properties at the tissue level. 814 

 815 

Figure 5: Strain-induced fibril alignment of MCT in stiffened, control and softened 816 

states: (a)-(c) Top row: schematic illustration of fibril distribution at increasing tissue strain 817 

levels; Bottom row: corresponding I() plots for a control (ASW) sample with corresponding 818 

-parameter. The vertical arrow to the left of the plots indicates the direction of applied tissue 819 
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strain. (a) (0% strain) shows bimodal distribution due to two groups of fibres (I and II) 820 

inclined to the direction of tensile load at two principal fibre directions (arrows). In the I() 821 

profile below, the two sets of peaks arising from these two groups of fibres are labelled I and 822 

II, respectively. (b) (20% strain) shows a wider range of orientations due to fibrils 823 

progressively reorienting (indicated by the red arcing arrows) toward the tensile axis (low ) 824 

and (c) (55% strain) shows highly aligned fibres along the vertical direction (higher ) (d) 825 

Initial decrease followed by increase of -parameter with increase tissue strain, for control 826 

(ASW) MCT, exhibiting an initial decrease, a local minimum at tissue strain ~ 20%, followed 827 

by an increase. (e) A typical stress-strain curve for ASW-treated MCT. In (d) and (e), 828 

rectangles indicate strain locations corresponding to (a)-(c). (f) Variation of the strain-829 

induced changes in the -parameter as a function of the mechanical state of MCT due to ionic 830 

treatment. Data from one representative MCT specimen in each state is shown. The tissue 831 

strain corresponding to the local minimum in  is indicated by a vertical arrow, denoted Tr, 832 

and is lowest for the stiffened and highest for the softened specimen. (g) Averaged Tr across 833 

the three treatments (control (ASW; black; n=4), stiffened (KASW; red; n=4) and softened 834 

(CaF-ASW; blue; n=3)); error bars are standard deviations.  835 
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 836 

Figure 6: Staggered model of MCT nanomechanics. (a) Staggered model for MCT: 837 

discontinuous, spindle-shaped collagen fibrils aggregating in parallel. The attached PGs serve 838 

as a binding site for interfibrillar cohesion mediated by cross-linker molecules (12). (b) 839 

Elevation of interfibrillar stiffness EIF leads to a corresponding increase in both tissue 840 
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modulus ET (left hand abscissa; solid line: staggered model prediction) and fibril-to-tissue 841 

strain ratio (F/T) (right hand abscissa; dashed line: staggered model prediction). Symbols 842 

show experimental values for each tissue group with EIF calculated from the staggered model 843 

equations (filled symbols: from Equation (1); open symbols: from Equation (2)). Open 844 

arrows indicate the abscissa each line belongs to. The inset schematics show the shear 845 

transfer, and consequent stress take-up, between fibrils in softened (left) and stiffened (right) 846 

states. Increased shear stress in the stiffened interfibrillar matrix is shown qualitatively by a 847 

larger number of interfibrillar shear lines. (c) Positive correlation between F/T and ET 848 

demonstrates that interfibrillar stiffening is the mechanism for alteration of MCT mechanics. 849 

The staggered-model relations between (F/T) and ET (Equation 3) are shown via solid 850 

curves (with a positive gradient) for varying EIF and three fixed levels of EF (blue: 60 MPa, 851 

black: 600 MPa, and grey: 6000 MPa). Likewise, dashed lines show staggered-model 852 

predictions for (F/T) vs. ET for varying EF and three fixed levels of EIF (black: 50×10-6 MPa, 853 

dark blue: 250×10-6 MPa, and grey: 500×10-6 MPa). Symbols show experimental (F/T) and 854 

ET, which show a clear positive correlation, indicating interfibrillar stiffening (blue: CaF-855 

ASW, black: ASW and red: KASW; error bars are standard deviations).  856 
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