28 research outputs found
Physiological and transcriptomic evaluation of drought effect on own-rooted and grafted grapevine rootstock (1103P and 101-14MGt)
Grapevines worldwide are grafted onto Vitis spp. rootstocks in order to improve their tolerance to biotic and abiotic stresses. Thus, the response of vines to drought is the result of the interaction between the scion variety and the rootstock genotype. In this work, the responses of genotypes to drought were evaluated on 1103P and 101-14MGt plants, own-rooted and grafted with Cabernet Sauvignon, in three different water deficit conditions (80, 50, and 20% soil water content, SWC). Gas exchange parameters, stem water potential, root and leaf ABA content, and root and leaf transcriptomic response were investigated. Under well-watered conditions, gas exchange and stem water potential were mainly affected by the grafting condition, whereas under sever water deficit they were affected by the rootstock genotype. Under severe stress conditions (20% SWC), 1103P showed an "avoidance" behavior. It reduced stomatal conductance, inhibited photosynthesis, increased ABA content in the roots, and closed the stomata. The 101-14MGt maintained a high photosynthetic rate, limiting the reduction of soil water potential. This behavior results in a "tolerance" strategy. An analysis of the transcriptome showed that most of the differentially expressed genes were detected at 20% SWC, and more significantly in roots than in leaves. A core set of genes has been highlighted on the roots as being related to the root response to drought that are not affected by genotype nor grafting. Genes specifically regulated by grafting and genes specifically regulated by genotype under drought conditions have been identified as well. The 1103P, more than the 101-14MGt, regulated a high number of genes in both own-rooted and grafted conditions. This different regulation revealed that 1103P rootstock readily perceived the water scarcity and rapidly faced the stress, in agreement with its avoidance strateg
Impact of Thoracoscopic Pulmonary Vein Isolation on Right Ventricular Function:A Pilot Study
Objective. Thoracoscopic surgical pulmonary vein isolation (sPVI) has been added to the treatment of atrial fibrillation (AF), showing excellent efficacy outcomes. However, data on right ventricular (RV) function following sPVI has never been studied. Our aim was to investigate RV function following sPVI and compare it to patients who underwent endocardial cryoballoon PVI. Methods. 25 patients underwent sPVI and were pair-matched according to age, sex, and AF type with 21 patients who underwent cryoballoon PVI. RV function was measured using tricuspid annular plane systolic excursion (TAPSE) and RV strain with 2D speckle tracking. Echocardiography was performed at baseline and at median 6-month follow-up. Results. Age was 54 ± 9 years and 84% were male; AF was paroxysmal in 92%. In the sPVI group, TAPSE was reduced with 31% at follow-up echocardiography (p<0.001) and RV strain showed a 25% reduction compared to baseline (p=0.018). In the control group, TAPSE and RV strain did not change significantly (−3% and +13%, p=0.410 and p=0.148). Change in TAPSE and RV strain was significantly different between groups (p≤0.001 and p=0.005). Conclusions. This study shows that RV function is significantly decreased following sPVI. This effect was not observed in the cryoballoon PVI control group
Anti-inflammatory and anti-acne effects of Hamamelis virginiana Bark in human keratinocytes
12openInternationalItalian coauthor/editorCutibacterium acnes (C. acnes) is recognized as one of the main triggers of the cutaneous inflammatory response in acne vulgaris, a chronic skin disorder with a multifactorial origin. Witch hazel (Hamamelis virginiana L.) is a plant widely used for skin inflammatory conditions, with some preliminary anti-inflammatory evidence on the skin, but lacking data on acne conditions. This study aimed to evaluate the effect of a glycolic extract from Hamamelis virginiana bark (HVE) versus C. acnes-induced inflammation in human keratinocytes (HaCaT). Phytochemical investigations of HVE identified hamamelitannin (HT) and proanthocyanidins as the most abundant compounds (respectively, 0.29% and 0.30% w/wextract). HVE inhibited C. acnes-induced IL-6 release (IC50: 136.90 μg/mL), by partially impairing NF-κB activation; however, no antibacterial or antibiofilm activities were found. In addition, HVE showed greater anti-inflammatory activity when TNF-α was used as a proinflammatory stimulus (IC50 of 38.93 μg/mL for IL-8 release), partially acting by antioxidant mechanisms, as shown for VEGF inhibition. The effects of HVE are primarily based on the proanthocyanidin content, as HT was found inactive on all the parameters tested. These results suggest further investigations of HVE in other inflammatory-based skin diseasesopenPiazza, Stefano; Martinelli, Giulia; Vrhovsek, Urska; Masuero, Domenico; Fumagalli, Marco; Magnavacca, Andrea; Pozzoli, Carola; Canilli, Luisa; Terno, Massimo; Angarano, Marco; Dell’Agli, Mario; Sangiovanni, EnricoPiazza, S.; Martinelli, G.; Vrhovsek, U.; Masuero, D.; Fumagalli, M.; Magnavacca, A.; Pozzoli, C.; Canilli, L.; Terno, M.; Angarano, M.; Dell’Agli, M.; Sangiovanni, E
The PLASMONX Project for advanced beam physics experiments
The Project PLASMONX is well progressing into its
design phase and has entered as well its second phase of
procurements for main components. The project foresees
the installation at LNF of a Ti:Sa laser system (peak
power > 170 TW), synchronized to the high brightness
electron beam produced by the SPARC photo-injector.
The advancement of the procurement of such a laser
system is reported, as well as the construction plans of a
new building at LNF to host a dedicated laboratory for
high intensity photon beam experiments (High Intensity
Laser Laboratory). Several experiments are foreseen
using this complex facility, mainly in the high gradient
plasma acceleration field and in the field of mono-
chromatic ultra-fast X-ray pulse generation via Thomson
back-scattering. Detailed numerical simulations have
been carried out to study the generation of tightly focused
electron bunches to collide with laser pulses in the
Thomson source: results on the emitted spectra of X-rays
are presented
Modeled deposition of nitrogen and sulfur in Europe estimated by 14 air quality model systems: evaluation, effects of changes in emissions and implications for habitat protection
The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives. This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition. This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100  ×  100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined. Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat
Cardiac dynamic magnetic resonance of a giant lung carcinoma invading the left atrium: do not let the imaging fool you
This study aimed to report on a non-small-cell lung cancer (NSCLC) originating from the right lung lower lobe and circulatory extension into the left atrium. Atrial involvement is an uncommon feature of advanced NSCLC, occurring in up to 10% of patients with bronchogenic carcinoma. In this case, the neoplastic mass was enormous and diagnosed as a lung pleiomorph carcinoma, staged T4N2M0 and so far considered irresectable. Conventional static imaging (chest CT-positron emission tomography scan; cardiac MRI) failed to rule out any direct invasion into surrounding structures. Surgery is the gold standard treatment for the local control of NSCLC without distant metastasis. Finally, preoperative cardiac dynamic magnetic resonance imaging and transoesophageal echocardiography were crucial to assess resectability, showing the absence of tumour invasion inside the pulmonary circulation and in the left atrium, supporting the decision-making for a radical, curative, surgical resection