99 research outputs found

    Divergent Roles of p75NTR and Trk Receptors in BDNF's Effects on Dendritic Spine Density and Morphology

    Get PDF
    Activation of TrkB receptors by brain-derived neurotrophic factor (BDNF) followed by MAPK/ERK signaling increases dendritic spine density and the proportion of mature spines in hippocampal CA1 pyramidal neurons. Considering the opposing actions of p75NTR and Trk receptors in several BDNF actions on CNS neurons, we tested whether these receptors also have divergent actions on dendritic spine density and morphology. A function-blocking anti-p75NTR antibody (REX) did not affect spine density by itself but it prevented BDNF's effect on spine density. Intriguingly, REX by itself increased the proportion of immature spines and prevented BDNF's effect on spine morphology. In contrast, the Trk receptor inhibitor k-252a increased spine density by itself, and prevented BDNF from further increasing spine density. However, most of the spines in k-252a-treated slices were of the immature type. These effects of k-252a on spine density and morphology required neuronal activity because they were prevented by TTX. These divergent BDNF actions on spine density and morphology are reminiscent of opposing functional signaling by p75NTR and Trk receptors and reveal an unexpected level of complexity in the consequences of BDNF signaling on dendritic morphology

    Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice

    Get PDF
    Dysfunction of the neurotrophin brain-derived neurotrophic factor (BDNF) is implicated in Rett syndrome (RTT), but the state of its releasable pool and downstream signaling in mice lacking methyl-CpG-binding protein-2 (Mecp2) is unknown. Here, we show that membrane currents and dendritic Ca2+ signals evoked by recombinant BDNF or an activator of diacylglycerol (DAG)-sensitive transient receptor potential canonical (TRPC) channels are impaired in CA3 pyramidal neurons of symptomatic Mecp2 mutant mice. TRPC3 and TRPC6 mRNA and protein levels are lower in Mecp2 mutant hippocampus, and chromatin immunoprecipitation (ChIP) identified Trpc3 as a target of MeCP2 transcriptional regulation. BDNF mRNA and protein levels are also lower in Mecp2 mutant hippocampus and dentate gyrus granule cells, which is reflected in impaired activity-dependent release of endogenous BDNF estimated from TRPC currents and dendritic Ca2+ signals in CA3 pyramidal neurons. These results identify the gene encoding TRPC3 channels as a MeCP2 target and suggest a potential therapeutic strategy to boost impaired BDNF signaling in RTT.Fil: Li, Wei. University of Alabama at Birmingahm; Estados UnidosFil: Calfa, Gaston Diego. University of Alabama at Birmingahm; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Larimore, Jennifer. Agnes Scott College. Biology Department and Neuroscience Program; Estados UnidosFil: Pozzo-Miller, Lucas. Agnes Scott College. Biology Department and Neuroscience Program; Estados Unido

    Multiple Approaches to Investigate the Transport and Activity-Dependent Release of BDNF and Their Application in Neurogenetic Disorders

    Get PDF
    Studies utilizing genetic and pharmacological manipulations in rodent models and neuronal cultures have revealed myriad roles of brain-derived neurotrophic factor (BDNF). Currently, this knowledge of BDNF function is being translated into improvement strategies for several debilitating neurological disorders in which BDNF abnormalities play a prominent role. Common among the BDNF-related disorders are irregular trafficking and release of mature BDNF (mBDNF) and/or its prodomain predecessor, proBDNF. Thus, investigating the conditions required for proper trafficking and release of BDNF is an essential step toward understanding and potentially improving these neurological disorders. This paper will provide examples of disorders related to BDNF release and serve as a review of the techniques being used to study the trafficking and release of BDNF

    Excitation/inhibition imbalance and impaired synaptic inhibition in hippocampal area CA3 of Mecp2 knockout mice

    Get PDF
    Rett syndrome (RTT) is a neurodevelopment disorder associated with intellectual disabilities and caused by loss-of-function mutations in the gene encoding the transcriptional regulator Methyl-CpG-binding Protein-2 (MeCP2). Neuronal dysfunction and changes in cortical excitability occur in RTT individuals and Mecp2-deficient mice, including hippocampal network hyperactivity and higher frequency of spontaneous multiunit spikes in the CA3 cell body layer. Here, we describe impaired synaptic inhibition and an excitation/inhibition (E/I) imbalance in area CA3 of acute slices from symptomatic Mecp2 knockout male mice (referred to as Mecp2-/y). The amplitude of TTX-resistant miniature inhibitory postsynaptic currents (mIPSC) was smaller in CA3 pyramidal neurons of Mecp2-/y slices than in wildtype controls, while the amplitude of miniature excitatory postsynaptic currents (mEPSC) was significantly larger in Mecp2-/y neurons. Consistently, quantitative confocal immunohistochemistry revealed significantly lower intensity of the alpha-1 subunit of GABAARs in the CA3 cell body layer of Mecp2-/y mice, while GluA1 puncta intensities were significantly higher in the CA3 dendritic layers of Mecp2-/y mice. In addition, the input/output (I/O) relationship of evoked IPSCs had a shallower slope in CA3 pyramidal neurons Mecp2-/y neurons. Consistent with the absence of neuronal degeneration in RTT and MeCP2-based mouse models, the density of parvalbumin- and somatostatin-expressing interneurons in area CA3 was not affected in Mecp2-/y mice. Furthermore, the intrinsic membrane properties of several interneuron subtypes in area CA3 were not affected by Mecp2 loss. However, mEPSCs are smaller and less frequent in CA3 fast-spiking basket cells of Mecp2-/y mice, suggesting an impaired glutamatergic drive in this interneuron population. These results demonstrate that a loss-of-function mutation in Mecp2 causes impaired E/I balance onto CA3 pyramidal neurons, leading to a hyperactive hippocampal network, likely contributing to limbic seizures in Mecp2-/y mice and RTT individuals.Fil: Calfa, Gaston Diego. University of Alabama at Birmingahm; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; ArgentinaFil: Li, Wei. University of Alabama at Birmingahm; Estados UnidosFil: Rutherford, John M.. University of Alabama at Birmingahm; Estados UnidosFil: Pozzo Miller, Lucas. University of Alabama at Birmingahm; Estados Unido

    Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons

    Get PDF
    Long-term potentiation of excitatory synapses on pyramidal neurons in the stratum radiatum rarely occurs in hippocampal area CA2. Here, we present evidence that perineuronal nets (PNNs), a specialized extracellular matrix typically localized around inhibitory neurons, also surround mouse CA2 pyramidal neurons and envelop their excitatory synapses. CA2 pyramidal neurons express mRNA transcripts for the major PNN component aggrecan, identifying these neurons as a novel source for PNNs in the hippocampus. We also found that disruption of PNNs allows synaptic potentiation of normally plasticity-resistant excitatory CA2 synapses; thus, PNNs play a role in restricting synaptic plasticity in area CA2. Finally, we found that postnatal development of PNNs on CA2 pyramidal neurons is modified by early-life enrichment, suggesting that the development of circuits containing CA2 excitatory synapses are sensitive to manipulations of the rearing environment

    HDAC activity is required for BDNF to increase quantal neurotransmitter release and dendritic spine density in CA1 pyramidal neurons

    Get PDF
    Molecular mechanisms involved in the strengthening and formation of synapses include the activation and repression of specific genes or subsets of genes by epigenetic modifications that do not alter the genetic code itself. Chromatin modifications mediated by histone acetylation have been shown to be critical for synaptic plasticity at hippocampal excitatory synapses and hippocampal-dependent memory formation. Considering that brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity and behavioral adaptations, it is not surprising that regulation of this gene is subject to histone acetylation changes during synaptic plasticity and hippocampal-dependent memory formation. Whether the effects of BDNF on dendritic spines and quantal transmitter release require histone modifications remains less known. By using two different inhibitors of histone deacetylases (HDACs), we describe here that their activity is required for BDNF to increase dendritic spine density and excitatory quantal transmitter release onto CA1 pyramidal neurons in hippocampal slice cultures. These results suggest that histone acetylation/deacetylation is a critical step in the modulation of hippocampal synapses by BDNF. Thus, mechanisms ofepigenetic modulation of synapse formation and function are novel targets to consider for the amelioration of symptoms of intellectual disabilities and neurodegenerative disorders associated with cognitive and memory deficits. © 2011 Wiley Periodicals, Inc.Fil: Calfa, Gaston Diego. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Farmacología Experimental de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Farmacología Experimental de Córdoba; Argentina. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Chapleau, Christopher A.. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Campbell, Susan. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados UnidosFil: Inoue, Takafumi. Waseda University. Faculty of Science and Engineering. Department of Life Science and Medical Bioscience; JapónFil: Morse, Sarah J.. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados UnidosFil: Lubin, Farah D.. University of Alabama at Birmingahm; Estados Unidos. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados UnidosFil: Pozzo-Miller, Lucas. The University of Alabama at Birmingham. Civitan International Research Center. Department of Neurobiology; Estados Unidos. University of Alabama at Birmingahm; Estados Unido

    Loss of Mecp2 causes atypical synaptic and molecular plasticity of parvalbumin-expressing interneurons reflecting rett syndrome–like sensorimotor defects

    Get PDF
    Rett syndrome (RTT) is caused in most cases by loss-of-function mutations in the X-linked gene encoding methyl CpG-binding protein 2 (MECP2). Understanding the pathological processes impacting sensory-motor control represents a major challenge for clinical management of individuals affected by RTT, but the underlying molecular and neuronal modifications remain unclear. We find that symptomatic male Mecp2 knockout (KO) mice show atypically elevated parvalbumin (PV) expression in both somatosensory (S1) and motor (M1) cortices together with excessive excitatory inputs converging onto PV-expressing interneurons (INs). In accordance, high-speed voltage-sensitive dye imaging shows reduced amplitude and spatial spread of synaptically induced neuronal depolarizations in S1 of Mecp2 KO mice. Moreover, motor learning-dependent changes of PV expression and structural synaptic plasticity typically occurring on PV+ INs in M1 are impaired in symptomatic Mecp2 KO mice. Finally, we find similar abnormalities of PV networks plasticity in symptomatic female Mecp2 heterozygous mice. These results indicate that in Mecp2 mutant mice the configuration of PV+ INs network is shifted toward an atypical plasticity state in relevant cortical areas compatible with the sensory-motor dysfunctions characteristics of RTT.Rett syndrome (RTT) is caused in most cases by loss-of-function mutations in the X-linked gene encoding methyl CpG-binding protein 2 (MECP2). Understanding the pathological processes impacting sensory-motor control represents a major challenge for clinical management of individuals affected by RTT, but the underlying molecular and neuronal modifications remain unclear. We find that symptomatic male Mecp2 knockout (KO) mice show atypically elevated parvalbumin (PV) expression in both somatosensory (S1) and motor (M1) cortices together with excessive excitatory inputs converging onto PV-expressing interneurons (INs). In accordance, high-speed voltage-sensitive dye imaging shows reduced amplitude and spatial spread of synaptically induced neuronal depolarizations in S1 of Mecp2 KO mice. Moreover, motor learning-dependent changes of PV expression and structural synaptic plasticity typically occurring on PV + INs in M1 are impaired in symptomatic Mecp2 KO mice. Finally, we find similar abnormalities of PV networks plasticity in symptomatic female Mecp2 heterozygous mice. These results indicate that in Mecp2 mutant mice the configuration of PV + INs network is shifted toward an atypical plasticity state in relevant cortical areas compatible with the sensory-motor dysfunctions characteristics of RTT

    Kinase activity is not required for αCaMKII-dependent presynaptic plasticity at CA3-CA1 synapses

    Get PDF
    Using targeted mouse mutants and pharmacologic inhibition of αCaMKII, we demonstrate that the αCaMKII protein, but not its activation, autophosphorylation or its ability to phosphorylate synapsin I, is required for normal short-term presynaptic plasticity. Furthermore, αCaMKII regulates the number of docked vesicles independent of its ability to be activated. These results indicate that αCaMKII has a nonenzymatic role in short-term presynaptic plasticity at hippocampal CA3-CA1 synapses. © 2007 Nature Publishing Group

    The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Get PDF
    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function
    corecore