3,372 research outputs found
Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions
Hydrogen dissociation on the Mg(0001) surface from quantum Monte Carlo calculations
We have used diffusion Monte Carlo (DMC) simulations to calculate the energy
barrier for H dissociation on the Mg(0001) surface. The calculations employ
pseudopotentials and systematically improvable B-spline basis sets to expand
the single particle orbitals used to construct the trial wavefunctions.
Extensive tests on system size, time step, and other sources of errors,
performed on periodically repeated systems of up to 550 atoms, show that all
these errors together can be reduced to eV. The DMC dissociation
barrier is calculated to be eV, and is compared to those
obtained with density functional theory using various exchange-correlation
functionals, with values ranging between 0.44 and 1.07 eV.Comment: 6 pages, 4 figures, to appear in Physical Review
The discovery of a low mass, pre-main-sequence stellar association around gamma Velorum
We report the serendipitous discovery of a population of low mass, pre-main
sequence stars (PMS) in the direction of the Wolf-Rayet/O-star binary system
gamma^{2} Vel and the Vela OB2 association. We argue that gamma^{2} Vel and the
low mass stars are truly associated, are approximately coeval and that both are
at distances between 360-490 pc, disagreeing at the 2 sigma level with the
recent Hipparcos parallax of gamma^{2} Vel, but consistent with older distance
estimates. Our results clearly have implications for the physical parameters of
the gamma^{2} Vel system, but also offer an exciting opportunity to investigate
the influence of high mass stars on the mass function and circumstellar disc
lifetimes of their lower mass PMS siblings.Comment: Monthly Notices of the Royal Astronomical Society, Letters - in pres
Quantum chaos in the mesoscopic device for the Josephson flux qubit
We show that the three-junction SQUID device designed for the Josephson flux
qubit can be used to study quantum chaos when operated at high energies. In the
parameter region where the system is classically chaotic we analyze the
spectral statistics. The nearest neighbor distributions are well fitted
by the Berry Robnik theory employing as free parameters the pure classical
measures of the chaotic and regular regions of phase space in the different
energy regions. The phase space representation of the wave functions is
obtained via the Husimi distributions and the localization of the states on
classical structures is analyzed.Comment: Final version, to be published in Phys. Rev. B. References added,
introduction and conclusions improve
Hydrogen Dissociation and Diffusion on Ni and Ti -doped Mg(0001) Surfaces
It is well known, both theoretically and experimentally, that alloying
MgH with transition elements can significantly improve the thermodynamic
and kinetic properties for H desorption, as well as the H intake by Mg
bulk. Here we present a density functional theory investigation of hydrogen
dissociation and surface diffusion over Ni-doped surface, and compare the
findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001)
surfaces. Our results show that the energy barrier for hydrogen dissociation on
the pure Mg(0001) surface is high, while it is small/null when Ni/Ti are added
to the surface as dopants. We find that the binding energy of the two H atoms
near the dissociation site is high on Ti, effectively impeding diffusion away
from the Ti site. By contrast, we find that on Ni the energy barrier for
diffusion is much reduced. Therefore, although both Ti and Ni promote H
dissociation, only Ni appears to be a good catalyst for Mg hydrogenation,
allowing diffusion away from the catalytic sites. Experimental results
corroborate these theoretical findings, i.e. faster hydrogenation of the Ni
doped Mg sample as opposed to the reference Mg or Ti doped Mg.Comment: 17 pages, 15 figures, to appear in Journal of Chemical Physic
Interesse legittimo ed esigenze di tutela contenzioso-amministrativa sostanziali nella Chiesa
Freeze-thaw durability of recycled concrete from construction and demolition wastes
Road engineering is one of the most accepted applications for concrete including
recycled aggregates from construction and demolition wastes as a partial replacement of the natural
coarse aggregates. Amongst the durability concerns of such application, the deterioration due to
freeze-thaw cycles is one of the most important causes decreasing the life span of concrete in
countries with a continental climate. Moreover, the use of de-icing salts, which is a common
practice to prevent ice formation on roadways and walkways, increases the superficial degradation
of concrete due to frost-salt scaling. Thus, this paper aims to assess the resistance to frost salt with
de-icing salts of two recycled concrete mixtures containing a 50% replacement of the conventional
gravel by recycled aggregates both of mixed and ceramic nature, i.e. containing ceramic percentages
of 34% and 100%, in comparison to a conventional concrete made with siliceous gravel. Therefore,
the surface scaling was evaluated based on EN 1339 (2004) on 28 days cured cylinders, exposed to
7, 14, 21 and 28 freeze-thaw cycles in the presence of sodium chloride solution. Given that no airentraining
admixture was used in any of the mixtures, the scaling of both conventional and recycled
concretes exceeded the 1 kg/m2 limit established by the European standard. Nonetheless, for the
casting surface, the recycled concrete with low ceramic content exhibited a similar behaviour to the
conventional concrete, whereas the performance of the recycled concrete with high ceramic content
was better. However, as expected, trowelled surfaces showed a worse performance and both
recycled concretes had a lower freeze-thaw durability than the conventional mixture. In any case,
the results suggested that the composition of the recycled aggregates could be used as a factor to
limit the differences in performance between recycled and conventional mixtures
Growth of Dome-Shaped Carbon Nanoislands on Ir(111): The Intermediate between Carbidic Clusters and Quasi-Free-Standing Graphene (vol 103, 166101, 2009)
Structure of nanoparticles embedded in micellar polycrystals
We investigate by scattering techniques the structure of water-based soft
composite materials comprising a crystal made of Pluronic block-copolymer
micelles arranged in a face-centered cubic lattice and a small amount (at most
2% by volume) of silica nanoparticles, of size comparable to that of the
micelles. The copolymer is thermosensitive: it is hydrophilic and fully
dissolved in water at low temperature (T ~ 0{\deg}C), and self-assembles into
micelles at room temperature, where the block-copolymer is amphiphilic. We use
contrast matching small-angle neuron scattering experiments to probe
independently the structure of the nanoparticles and that of the polymer. We
find that the nanoparticles do not perturb the crystalline order. In addition,
a structure peak is measured for the silica nanoparticles dispersed in the
polycrystalline samples. This implies that the samples are spatially
heterogeneous and comprise, without macroscopic phase separation, silica-poor
and silica-rich regions. We show that the nanoparticle concentration in the
silica-rich regions is about tenfold the average concentration. These regions
are grain boundaries between crystallites, where nanoparticles concentrate, as
shown by static light scattering and by light microscopy imaging of the
samples. We show that the temperature rate at which the sample is prepared
strongly influence the segregation of the nanoparticles in the
grain-boundaries.Comment: accepted for publication in Langmui
Excision complète du mésorectum par voie coelioscopique pour cancer du bas rectum : expérience après une série de 174 patients
- …
