4,384 research outputs found
Thermodynamics of Bose-Condensed Atomic Hydrogen
We study the thermodynamics of the Bose-condensed atomic hydrogen confined in
the Ioffe-Pritchard potential. Such a trapping potential, that models the
magnetic trap used in recent experiments with hydrogen, is anharmonic and
strongly anisotropic. We calculate the ground-state properties, the condensed
and non-condensed fraction and the Bose-Einstein transition temperature. The
thermodynamics of the system is strongly affected by the anharmonicity of this
external trap. Finally, we consider the possibility to detect Josephson-like
currents by creating a double-well barrier with a laser beam.Comment: 11 pages, 4 figures, to be published in European Physical Journal
Thermodynamics of a trapped Bose condensate with negative scattering length
We study the Bose-Einstein condensation (BEC) for a system of atoms,
which have negative scattering length (attractive interaction), confined in a
harmonic potential. Within the Bogoliubov and Popov approximations, we
numerically calculate the density profile for both condensate and
non-condensate fractions and the spectrum of elementary excitations. In
particular, we analyze the temperature and number-of-boson dependence of these
quantities and evaluate the BEC transition temperature . We calculate
the loss rate for inelastic two- and three-body collisions. We find that the
total loss rate is strongly dependent on the density profile of the condensate,
but this density profile does not appreciably change by increasing the thermal
fraction. Moreover, we study, using the quasi-classical Popov approximation,
the temperature dependence of the critical number of condensed bosons,
for which there is the collapse of the condensate. There are different regimes
as a function of the total number of atoms. For the condensate is
always metastable but for the condensate is metastable only for
temperatures that exceed a critical value .Comment: RevTex, 7 postscript figures, to be published in Journal of Low
Temperature Phsyic
Impact of low-input meadows on arthropod diversity at habitat and landscape level
In Switzerland, in order to preserve and enhance arthopod diversity in grassland ecosystems (among others), farmers had to convert at least 7 % of their land to ecological compensation areas – ECA. Major ECA are low input grassland, traditional orchards, hedges and wild flower strips. In this paper the difference in species assemblages of 3 arthropod groups, namely spiders, carabid beetles and butterflies between intensively managed and low input meadows is stressed by means of multivariate statistics. On one hand, the consequences of these differences are analysed at the habitat level to promote good practices for the arthropod diversity in grassland ecosystems. On the other hand, the contribution of each meadow type to the regional diversity is investigated to widen the analysis at the landscape level
Thermodynamics of Multi-Component Fermi Vapors
We study the thermodynamical properties of Fermi vapors confined in a
harmonic external potential. In the case of the ideal Fermi gas, we compare
exact density profiles with their semiclassical approximation in the conditions
of recent experiments. Then, we consider the phase-separation of a
multi-component Fermi vapor. In particular, we analyze the phase-separation as
a function of temperature, number of particles and scattering length. Finally,
we discuss the effect of rotation on the stability and thermodynamics of the
trapped vapors.Comment: 15 pages, 5 figures, to be published in J. Phys. B (Atom. Mol.) as a
Special Issue Articl
Income uncertainty and aggregate consumption
We investigate the relevance of aggregate and consumer-specific income uncertainty for aggregate consumption changes in the US over the period 1952-2001. Theoretically, the effect of income risk on consumption changes is decomposed into an aggregate and into a consumer-specific part. Empirically, aggregate risk is modelled through a GARCH process on aggregate income shocks and individual risk is modelled as an unobserved component and obtained through Kalman filtering. Our results suggest that aggregate income risk explains a negligible fraction of the variance of aggregate consumption changes. A more important part of aggregate consumption changes is explained by the unobserved component. The interpretation of this component as reflecting consumer-specific income risk is supported by the finding that it is negatively affected by received consumer transfers.income uncertainty, consumption, precaution, state space models, GARCH errors, unobserved component, Bayesian.
A rocket-borne electrostatic analyzer for measurement of energetic particle flux
A rocket-borne electrostatic analyzer experiment is described. It is used to measure energetic particle flux (0.9 to 14 keV) in the nighttime midlatitude E region. Energetic particle precipitation is believed to be a significant nighttime ionization source, particularly during times of high geomagnetic activity. The experiment was designed for use in the payload of a Nike Apache sounding rocket. The electrostatic analyzer employs two cylindrical parallel plates subtending a central angle of 90 deg. The voltage waveform supplied to the plates is a series of steps synchronized to the spin of the payload during flight. Both positive and negative voltages are provided, extending the detection capabilities of the instrument to both electrons and protons (and positive ions). The development, construction and operation of the instrument is described together with a preliminary evaluation of its performance in a rocket flight
Are z>2 Herschel galaxies proto-spheroids?
We present a backward approach for the interpretation of the evolution of the
near-infrared and the far-infrared luminosity functions across the redshift
range 0<z<3. In our method, late-type galaxies are treated by means of a
parametric phenomenological method based on PEP/HerMES data up to z~4, whereas
spheroids are described by means of a physically motivated backward model. The
spectral evolution of spheroids is modelled by means of a single-mass model,
associated to a present-day elliptical with K-band luminosity comparable to the
break of the local early-type luminosity function. The formation of
proto-spheroids is assumed to occurr across the redshift range 1< z < 5. The
key parameter is represented by the redshift z_0.5 at which half
proto-spheroids are already formed. A statistical study indicates for this
parameter values between z_0.5=1.5 and z_0.5=3. We assume as fiducial value
z_0.5~2, and show that this assumption allows us to describe accourately the
redshift distributions and the source counts. By assuming z_0.5 ~ 2 at the
far-IR flux limit of the PEP-COSMOS survey, the PEP-selected sources observed
at z>2 can be explained as progenitors of local spheroids caught during their
formation. We also test the effects of mass downsizing by dividing the
spheroids into three populations of different present-day stellar masses. The
results obtained in this case confirm the validity of our approach, i.e. that
the bulk of proto-spheroids can be modelled by means of a single model which
describes the evolution of galaxies at the break of the present-day early type
K-band LF.Comment: Accepted for publication in ApJ; 26 pages; 13 figure
Religion and Child Death in Ireland's Industrial Capital: Belfast 1911
Ireland is often seen as an outlier within the western world in terms of demographic behavior. As a society it has also been noted for its religious fervor, including religious division, at least until fairly recently. Might there be connections historically between these two spheres? One intriguing area of enquiry relates to possible links between religious denomination and child mortality. We explore this possibility using individual-level data from the household schedules of the Irish Census of 1911. The study area is Belfast, Ireland's leading industrial city, which allows for a wide range of occupational and social class differences. Combining regression techniques and the mortality index proposed by Preston and Haines (1991), we seek to tease out the relationship between child mortality and religious affiliation while controlling for a range of other explanatory variables. We show that religious identity is clearly associated with different infant and child mortality outcomes. Of the three major religious denominations, Catholics suffered the most from high infant mortality, Church of Ireland (Anglican) families were only a little better off, while the largest Protestant denomination, the Presbyterians, had the best infant mortality outcomes. These differences were related, in the main, to the varying socioeconomic composition of the three major religious denominations but religious affiliation also mattered in its own right
Nanoparticles-cell association predicted by protein corona fingerprints
In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a "protein corona" layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ≈ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells
Ideal Quantum Gases in D-dimensional Space and Power-law Potentials
We investigate ideal quantum gases in D-dimensional space and confined in a
generic external potential by using the semiclassical approximation. In
particular, we derive density of states, density profiles and critical
temperatures for Fermions and Bosons trapped in isotropic power-law potentials.
Form such results, one can easily obtain those of quantum gases in a rigid box
and in a harmonic trap. Finally, we show that the Bose-Einstein condensation
can set up in a confining power-law potential if and only if ,
where is the space dimension and is the power-law exponent.Comment: 18 pages, Latex, to be published in Journal of Mathematical Physic
- …