52 research outputs found

    Classification of tumours

    Get PDF
    Tumours are classified according to the most differentiated cells with the exception of carcinomas where a few tumour cells show neuroendocrine differentiation. In this case these cells are regarded as redifferentiated tumour cells, and the tumour is not classified as neuroendocrine. However, it is now clear that normal neuroendocrine cells can divide, and that continuous stimulation of such cells results in tumour formation, which during time becomes increasingly malignant. To understand tumourigenesis, it is of utmost importance to recognize the cell of origin of the tumour since knowledge of the growth regulation of that cell may give information about development and thus possible prevention and prophylaxis of the tumour. It may also have implications for the treatment. The successful treatment of gastrointestinal stromal tumours by a tyrosine kinase inhibitor is an example of the importance of a correct cellular classification of a tumour. In the future tumours should not just be classified as for instance adenocarcinomas of an organ, but more precisely as a carcinoma originating from a certain cell type of that organ

    The evolution of tooth wear indices

    Get PDF
    Tooth wear—attrition, erosion and abrasion—is perceived internationally as an ever-increasing problem. Clinical and epidemiological studies, however, are difficult to interpret and compare due to differences in terminology and the large number of indices that have been developed for diagnosing, grading and monitoring dental hard tissue loss. These indices have been designed to identify increasing severity and are usually numerical. Some record lesions on an aetiological basis (e.g. erosion indices), others record lesions irrespective of aetiology (tooth wear indices); none have universal acceptance, complicating the evaluation of the true increase in prevalence reported. This article considers the ideal requirements for an erosion index. It reviews the literature to consider how current indices have evolved and discusses if these indices meet the clinical and research needs of the dental profession

    Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes

    Get PDF
    BACKGROUND: Carriers of germline mutations in DNA mismatch repair (MMR) genes have a high risk of colorectal cancer (CRC), but the modifiers of this risk are not well established. We estimated an association between body mass index (BMI) in early adulthood and subsequent risk of CRC for carriers and, as a comparison, estimated the association for non-carriers. METHODS: A weighted Cox regression was used to analyse height and weight at 20 years reported by 1324 carriers of MMR gene mutations (500 MLH1, 648 MSH2, 117 MSH6 and 59 PMS2) and 1219 non-carriers from the Colon Cancer Family Registry. RESULTS: During 122,304 person-years of observation, we observed diagnoses of CRC for 659 carriers (50%) and 36 non-carriers (3%). For carriers, the risk of CRC increased by 30% for each 5 kg m(-2) increment in BMI in early adulthood (hazard ratio, HR: 1.30; 95% confidence interval, CI: 1.08-1.58; P=0.01), and increased by 64% for non-carriers (HR: 1.64; 95% CI: 1.02-2.64; P=0.04) after adjusting for sex, country, cigarette smoking and alcohol drinking (and the MMR gene that was mutated in carriers). The difference in HRs for carriers and non-carriers was not statistically significant (P=0.50). For MLH1 and PMS2 (MutLα heterodimer) mutation carriers combined, the corresponding increase was 36% (HR: 1.36; 95% CI: 1.05-1.76; P=0.02). For MSH2 and MSH6 (MutSα heterodimer) mutation carriers combined, the HR was 1.26 (95% CI: 0.96-1.65; P=0.09). There was no significant difference between the HRs for MutLα and MutSα heterodimer carriers (P=0.56). CONCLUSION: Body mass index in early adulthood is positively associated with risk of CRC for MMR gene mutation carriers and non-carriers

    Body mass index in early adulthood and colorectal cancer risk for carriers and non-carriers of germline mutations in DNA mismatch repair genes

    Get PDF
    BACKGROUND: Carriers of germline mutations in DNA mismatch repair (MMR) genes have a high risk of colorectal cancer (CRC), but the modifiers of this risk are not well established. We estimated an association between body mass index (BMI) in early adulthood and subsequent risk of CRC for carriers and, as a comparison, estimated the association for non-carriers. METHODS: A weighted Cox regression was used to analyse height and weight at 20 years reported by 1324 carriers of MMR gene mutations (500 MLH1, 648 MSH2, 117 MSH6 and 59 PMS2) and 1219 non-carriers from the Colon Cancer Family Registry. RESULTS: During 122,304 person-years of observation, we observed diagnoses of CRC for 659 carriers (50%) and 36 non-carriers (3%). For carriers, the risk of CRC increased by 30% for each 5 kg m(-2) increment in BMI in early adulthood (hazard ratio, HR: 1.30; 95% confidence interval, CI: 1.08-1.58; P=0.01), and increased by 64% for non-carriers (HR: 1.64; 95% CI: 1.02-2.64; P=0.04) after adjusting for sex, country, cigarette smoking and alcohol drinking (and the MMR gene that was mutated in carriers). The difference in HRs for carriers and non-carriers was not statistically significant (P=0.50). For MLH1 and PMS2 (MutLα heterodimer) mutation carriers combined, the corresponding increase was 36% (HR: 1.36; 95% CI: 1.05-1.76; P=0.02). For MSH2 and MSH6 (MutSα heterodimer) mutation carriers combined, the HR was 1.26 (95% CI: 0.96-1.65; P=0.09). There was no significant difference between the HRs for MutLα and MutSα heterodimer carriers (P=0.56). CONCLUSION: Body mass index in early adulthood is positively associated with risk of CRC for MMR gene mutation carriers and non-carriers

    Cyanobacterial lipopolysaccharides and human health – a review

    Get PDF
    Cyanobacterial lipopolysaccharide/s (LPS) are frequently cited in the cyanobacteria literature as toxins responsible for a variety of heath effects in humans, from skin rashes to gastrointestinal, respiratory and allergic reactions. The attribution of toxic properties to cyanobacterial LPS dates from the 1970s, when it was thought that lipid A, the toxic moiety of LPS, was structurally and functionally conserved across all Gram-negative bacteria. However, more recent research has shown that this is not the case, and lipid A structures are now known to be very different, expressing properties ranging from LPS agonists, through weak endotoxicity to LPS antagonists. Although cyanobacterial LPS is widely cited as a putative toxin, most of the small number of formal research reports describe cyanobacterial LPS as weakly toxic compared to LPS from the Enterobacteriaceae. We systematically reviewed the literature on cyanobacterial LPS, and also examined the much lager body of literature relating to heterotrophic bacterial LPS and the atypical lipid A structures of some photosynthetic bacteria. While the literature on the biological activity of heterotrophic bacterial LPS is overwhelmingly large and therefore difficult to review for the purposes of exclusion, we were unable to find a convincing body of evidence to suggest that heterotrophic bacterial LPS, in the absence of other virulence factors, is responsible for acute gastrointestinal, dermatological or allergic reactions via natural exposure routes in humans. There is a danger that initial speculation about cyanobacterial LPS may evolve into orthodoxy without basis in research findings. No cyanobacterial lipid A structures have been described and published to date, so a recommendation is made that cyanobacteriologists should not continue to attribute such a diverse range of clinical symptoms to cyanobacterial LPS without research confirmation

    Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010–2015)

    Full text link
    • …
    corecore