4,717 research outputs found

    Note on the Action of Quinine.

    Get PDF
    n/

    Scaling Symmetries of Scatterers of Classical Zero-Point Radiation

    Full text link
    Classical radiation equilibrium (the blackbody problem) is investigated by the use of an analogy. Scaling symmetries are noted for systems of classical charged particles moving in circular orbits in central potentials V(r)=-k/r^n when the particles are held in uniform circular motion against radiative collapse by a circularly polarized incident plane wave. Only in the case of a Coulomb potential n=1 with fixed charge e is there a unique scale-invariant spectrum of radiation versus frequency (analogous to zero-point radiation) obtained from the stable scattering arrangement. These results suggest that non-electromagnetic potentials are not appropriate for discussions of classical radiation equilibrium.Comment: 13 page

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Development of the dry tape battery concept

    Get PDF
    High energy anode and cathode for dry tape battery - incapsulation of electrolyte - manufacturing and testing of devic

    Oscillator model for dissipative QED in an inhomogeneous dielectric

    Full text link
    The Ullersma model for the damped harmonic oscillator is coupled to the quantised electromagnetic field. All material parameters and interaction strengths are allowed to depend on position. The ensuing Hamiltonian is expressed in terms of canonical fields, and diagonalised by performing a normal-mode expansion. The commutation relations of the diagonalising operators are in agreement with the canonical commutation relations. For the proof we replace all sums of normal modes by complex integrals with the help of the residue theorem. The same technique helps us to explicitly calculate the quantum evolution of all canonical and electromagnetic fields. We identify the dielectric constant and the Green function of the wave equation for the electric field. Both functions are meromorphic in the complex frequency plane. The solution of the extended Ullersma model is in keeping with well-known phenomenological rules for setting up quantum electrodynamics in an absorptive and spatially inhomogeneous dielectric. To establish this fundamental justification, we subject the reservoir of independent harmonic oscillators to a continuum limit. The resonant frequencies of the reservoir are smeared out over the real axis. Consequently, the poles of both the dielectric constant and the Green function unite to form a branch cut. Performing an analytic continuation beyond this branch cut, we find that the long-time behaviour of the quantised electric field is completely determined by the sources of the reservoir. Through a Riemann-Lebesgue argument we demonstrate that the field itself tends to zero, whereas its quantum fluctuations stay alive. We argue that the last feature may have important consequences for application of entanglement and related processes in quantum devices.Comment: 24 pages, 1 figur
    • …
    corecore