5,288 research outputs found

    Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes

    Get PDF
    AimMeiofaunal communities that inhabit the marine benthos offer unique opportunities to simultaneously study the macroecology of numerous phyla that exhibit different life-history strategies. Here, we ask: (1) if the macroecology of meiobenthic communities is explained mainly by dispersal constraints or by environmental conditions; and (2) if levels of meiofaunal diversity surpass existing estimates based on morphological taxonomy. LocationUK and mainland European coast. MethodsNext-generation sequencing techniques (NGS; Roche 454 FLX platform) using 18S nuclear small subunit ribosomal DNA (rDNA) gene. Pyrosequences were analysed using AmpliconNoise followed by chimera removal using Perseus. ResultsRarefaction curves revealed that sampling saturation was only reached at 15% of sites, highlighting that the bulk of meiofaunal diversity is yet to be discovered. Overall, 1353 OTUs were recovered and assigned to 23 different phyla. The majority of sampled sites had c. 60-70 unique operational taxonomic units (OTUs) per site, indicating high levels of beta diversity. The environmental parameters that best explained community structure were seawater temperature, geographical distance and sediment size, but most of the variability (R-2=70%-80%) remains unexplained. Main conclusionsHigh percentages of endemic OTUs suggest that meiobenthic community composition is partly niche-driven, as observed in larger organisms, but also shares macroecological features of microorganisms by showing high levels of cosmopolitanism (albeit on a much smaller scale). Meiobenthic communities exhibited patterns of isolation by distance as well as associations between niche, latitude and temperature, indicating that meiobenthic communities result from a combination of niche assembly and dispersal processes. Conversely, isolation-by-distance patterns were not identified in the featured protists, suggesting that animals and protists adhere to radically different macroecological processes, linked to life-history strategies.Natural Environment Research Council (NERC) [NE/E001505/1, NE/F001266/1, MGF-167]; Portuguese Foundation for Science and Technology (FCT) [SFRH/BD/27413/2006, SFRH/BPD/80447/2014]; EPSRC [EP/H003851/1]; BBSRC CASE studentship; Unilever; Biotechnology and Biological Sciences Research Council [987347]; Engineering and Physical Sciences Research Council [EP/H003851/1]; Natural Environment Research Council [NE/F001290/1, NE/F001266/1, NE/E001505/1, NBAF010002]info:eu-repo/semantics/publishedVersio

    Gravitational Geons Revisited

    Get PDF
    A careful analysis of the gravitational geon solution found by Brill and Hartle is made. The gravitational wave expansion they used is shown to be consistent and to result in a gauge invariant wave equation. It also results in a gauge invariant effective stress-energy tensor for the gravitational waves provided that a generalized definition of a gauge transformation is used. To leading order this gauge transformation is the same as the usual one for gravitational waves. It is shown that the geon solution is a self-consistent solution to Einstein's equations and that, to leading order, the equations describing the geometry of the gravitational geon are identical to those derived by Wheeler for the electromagnetic geon. An appendix provides an existence proof for geon solutions to these equations.Comment: 18 pages, ReVTeX. To appear in Physical Review D. Significant changes include more details in the derivations of certain key equations and the addition of an appendix containing a proof of the existence of a geon solution to the equations derived by Wheeler. Also a reference has been added and various minor changes have been mad

    Experimental Observation of Energy Modulation in Electron Beams Passing Through Terahertz Dielectric Wakefield Structures

    Full text link
    We report observation of a strong wakefield induced energy modulation in an energy-chirped electron bunch passing through a dielectric-lined waveguide. This modulation can be effectively converted into a spatial modulation forming micro-bunches with a periodicity of 0.5 - 1 picosecond, hence capable of driving coherent THz radiation. The experimental results agree well with theoretical predictions.Comment: v3. Reviewers' suggestions incorporated. Accepted by PR

    The Dipole Coupling of Atoms and Light in Gravitational Fields

    Full text link
    The dipole coupling term between a system of N particles with total charge zero and the electromagnetic field is derived in the presence of a weak gravitational field. It is shown that the form of the coupling remains the same as in flat space-time if it is written with respect to the proper time of the observer and to the measurable field components. Some remarks concerning the connection between the minimal and the dipole coupling are given.Comment: 10 pages, LaTe

    Temperature dependence of the magnetic Casimir-Polder interaction

    Full text link
    We analyze the magnetic dipole contribution to atom-surface dispersion forces. Unlike its electrical counterpart, it involves small transition frequencies that are comparable to thermal energy scales. A significant temperature dependence is found near surfaces with a nonzero DC conductivity, leading to a strong suppression of the dispersion force at T > 0. We use thermal response theory for the surface material and discuss both normal metals and superconductors. The asymptotes of the free energy of interaction and of the entropy are calculated analytically over a large range of distances. Near a superconductor, the onset of dissipation at the phase transition strongly changes the interaction, including a discontinuous entropy. We discuss the similarities with the Casimir interaction beween two surfaces and suggest that precision measurements of the atom-surface interaction may shed new light upon open questions around the temperature dependence of dispersion forces between lossy media.Comment: 11 figure

    Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    Full text link
    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski spacetime. Classical zero-point radiation and relativistic physics enter in an essential way in the derivation which is based upon the behavior of free radiation fields and the assumption that the field correlation functions contain but a single correlation time in thermal equilibrium. The work has connections with the thermal effects of acceleration found in relativistic quantum field theory.Comment: 23 page

    Program on Earth Observation Data Management Systems (EODMS), appendixes

    Get PDF
    The needs of state, regional, and local agencies involved in natural resources management in Illinois, Iowa, Minnesota, Missouri, and Wisconsin are investigated to determine the design of satellite remotely sensed derivable information products. It is concluded that an operational Earth Observation Data Management System (EODMS) will be most beneficial if it provides a full range of services - from raw data acquisition to interpretation and dissemination of final information products. Included is a cost and performance analysis of alternative processing centers, and an assessment of the impacts of policy, regulation, and government structure on implementing large scale use of remote sensing technology in this community of users

    Using fiberless, wearable fNIRS to monitor brain activity in real-world cognitive tasks

    Get PDF
    Functional Near Infrared Spectroscopy (fNIRS) is a neuroimaging technique that uses near-infrared light to monitor brain activity. Based on neurovascular coupling, fNIRS is able to measure the haemoglobin concentration changes secondary to neuronal activity. Compared to other neuroimaging techniques, fNIRS represents a good compromise in terms of spatial and temporal resolution. Moreover, it is portable, lightweight, less sensitive to motion artifacts and does not impose significant physical restraints. It is therefore appropriate to monitor a wide range of cognitive tasks (e.g., auditory, gait analysis, social interaction) and different age populations (e.g., new-borns, adults, elderly people). The recent development of fiberless fNIRS devices has opened the way to new applications in neuroscience research. This represents a unique opportunity to study functional activity during real-world tests, which can be more sensitive and accurate in assessing cognitive function and dysfunction than lab-based tests. This study explored the use of fiberless fNIRS to monitor brain activity during a real-world prospective memory task. This protocol is performed outside the lab and brain haemoglobin concentration changes are continuously measured over the prefrontal cortex while the subject walks around in order to accomplish several different tasks
    corecore