2,173 research outputs found

    Influence of dynamic stretching on ankle joint stiffness, vertical stiffness and running economy during treadmill running

    Get PDF
    Data availability statement: The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.Copyright © 2022 Pamboris, Noorkoiv, Baltzopoulos, Powell, Howes and Mohagheghi. The purpose of the present study was to investigate whether and how dynamic stretching of the plantarflexors may influence running economy. A crossover design with a minimum of 48 h between experimental (dynamic stretching) and control conditions was used. Twelve recreational runners performed a step-wise incremental protocol to the limit of tolerance on a motorised instrumented treadmill. The initial speed was 2.3 m/s, followed by increments of 0.2 m/s every 3 min. Dynamic joint stiffness, vertical stiffness and running kinematics during the initial stage of the protocol were calculated. Running economy was evaluated using online gas-analysis. For each participant, the minimum number of stages completed before peak O2 uptake (V̇O2peak) common to the two testing conditions was used to calculate the gradient of a linear regression line between V̇O2 (y-axis) and speed (x-axis). The number of stages, which ranged between 4 and 8, was used to construct individual subject regression equations. Non-clinical forms of magnitude-based decision method were used to assess outcomes. The dynamic stretching protocol resulted in a possible decrease in dynamic ankle joint stiffness (−10.7%; 90% confidence limits ±16.1%), a possible decrease in vertical stiffness (−2.3%, ±4.3%), a possibly beneficial effect on running economy (−4.0%, ±8.3%), and very likely decrease in gastrocnemius medialis muscle activation (−27.1%, ±39.2%). The results indicate that dynamic stretching improves running economy, possibly via decreases in dynamic joint and vertical stiffness and muscle activation. Together, these results imply that dynamic stretching should be recommended as part of the warm-up for running training in recreational athletes examined in this study

    Signatures of Star-planet interactions

    Full text link
    Planets interact with their host stars through gravity, radiation and magnetic fields, and for those giant planets that orbit their stars within \sim10 stellar radii (\sim0.1 AU for a sun-like star), star-planet interactions (SPI) are observable with a wide variety of photometric, spectroscopic and spectropolarimetric studies. At such close distances, the planet orbits within the sub-alfv\'enic radius of the star in which the transfer of energy and angular momentum between the two bodies is particularly efficient. The magnetic interactions appear as enhanced stellar activity modulated by the planet as it orbits the star rather than only by stellar rotation. These SPI effects are informative for the study of the internal dynamics and atmospheric evolution of exoplanets. The nature of magnetic SPI is modeled to be strongly affected by both the stellar and planetary magnetic fields, possibly influencing the magnetic activity of both, as well as affecting the irradiation and even the migration of the planet and rotational evolution of the star. As phase-resolved observational techniques are applied to a large statistical sample of hot Jupiter systems, extensions to other tightly orbiting stellar systems, such as smaller planets close to M dwarfs become possible. In these systems, star-planet separations of tens of stellar radii begin to coincide with the radiative habitable zone where planetary magnetic fields are likely a necessary condition for surface habitability.Comment: Accepted for publication in the handbook of exoplanet

    Sources of Sex Information Used by Young British Women Who Have Sex with Women (WSW) and Women Who Have Sex Exclusively with Men (WSEM): Evidence from the National Survey of Sexual Attitudes and Lifestyles

    Get PDF
    There is little consideration about the provision of information about sex to women who have sex with women (WSW). This study drew on data from the third National Survey of Sexual Attitudes and Lifestyle, a nationally representative survey of people in Great Britain. Logistic regression was undertaken to examine firstly the relationships between WSW and women who have sex exclusively with men (WSEM) and their main source of information about sex, and secondly between WSW/WSEM and unmet need for information about sex. Each source was included as the binary outcome indicating yes this was the main source, or no this was not the main source of information about sex. The results found that WSW had significantly lower odds of reporting lessons at schools as their main source of information, and significantly higher odds of reporting sources defined as ‘other’ (predominantly first girlfriend/boyfriend or sexual partner) as their main source of information. Reported levels of unmet need for information was also higher amongst young WSW compared with WSEM. This study provides new insights into the sex educational needs of young women and highlights the need for sex education in schools in Great Britain to include information on a full-range of sexual practices, including same-sex sexual relationships

    Mixed material wear particle isolation from periprosthetic tissue surrounding total joint replacements

    Get PDF
    Submicron-sized wear particles are generally accepted as a potential cause of aseptic loosening when produced in sufficient volumes. With the accelerating use of increasingly wear-resistant biomaterials, identifying such particles and evaluating their biological response is becoming more challenging. Highly sensitive wear particle isolation methods have been developed but these methods cannot isolate the complete spectrum of particle types present in individual tissue samples. Two established techniques were modified to create one novel method to isolate both high- and low-density materials from periprosthetic tissue samples. Ten total hip replacement and eight total knee replacement tissue samples were processed. All particle types were characterized using high resolution scanning electron microscopy. UHMWPE and a range of high-density materials were isolated from all tissue samples, including: polymethylmethacrylate, zirconium dioxide, titanium alloy, cobalt chromium alloy and stainless steel. This feasibility study demonstrates the coexistence of mixed particle types in periprosthetic tissues and provides researchers with high-resolution images of clinically relevant wear particles that could be used as a reference for future in vitro biological response studies

    Isolation and characterisation of wear debris surrounding failed total ankle replacements

    Get PDF
    Aseptic loosening and osteolysis continue to be a short- to mid-term problem for total ankle replacement (TAR) devices. The production of wear particles may contribute to poor performance, but their characteristics are not well understood. This study aimed to determine the chemical composition, size and morphology of wear particles surrounding failed TARs. A recently developed wear particle isolation method capable of isolating both high- and low-density materials was applied to 20 retrieved periprosthetic tissue samples from 15 failed TARs of three different brands. Isolated particles were imaged using ultra-high-resolution imaging and characterised manually to determine their chemical composition, size, and morphology. Six different materials were identified, which included: UHMWPE, calcium phosphate (CaP), cobalt chromium alloy (CoCr), commercially pure titanium, titanium alloy and stainless steel. Eighteen of the 20 samples contained three or more different wear particle material types. In addition to sub-micron UHMWPE particles, which were present in all samples, elongated micron-sized shards of CaP and flakes of CoCr were commonly isolated from tissues surrounding AES TARs. The mixed particles identified in this study demonstrate the existence of a complex periprosthetic environment surrounding TAR devices. The presence of such particles suggests that early failure of devices may be due in part to the multifaceted biological cascade that ensues after particle release. This study could be used to support the validation of clinically-relevant wear simulator testing, pre-clinical assessment of fixation wear and biological response studies to improve the performance of next generation ankle replacement devices

    Evolutionary Toggling of Vpx/Vpr Specificity Results in Divergent Recognition of the Restriction Factor SAMHD1

    Get PDF
    SAMHD1 is a host restriction factor that blocks the ability of lentiviruses such as HIV-1 to undergo reverse transcription in myeloid cells and resting T-cells. This restriction is alleviated by expression of the lentiviral accessory proteins Vpx and Vpr (Vpx/Vpr), which target SAMHD1 for proteasome-mediated degradation. However, the precise determinants within SAMHD1 for recognition by Vpx/Vpr remain unclear. Here we show that evolution of Vpx/Vpr in primate lentiviruses has caused the interface between SAMHD1 and Vpx/Vpr to alter during primate lentiviral evolution. Using multiple HIV-2 and SIV Vpx proteins, we show that Vpx from the HIV-2 and SIVmac lineage, but not Vpx from the SIVmnd2 and SIVrcm lineage, require the C-terminus of SAMHD1 for interaction, ubiquitylation, and degradation. On the other hand, the N-terminus of SAMHD1 governs interactions with Vpx from SIVmnd2 and SIVrcm, but has little effect on Vpx from HIV-2 and SIVmac. Furthermore, we show here that this difference in SAMHD1 recognition is evolutionarily dynamic, with the importance of the N- and C-terminus for interaction of SAMHD1 with Vpx and Vpr toggling during lentiviral evolution. We present a model to explain how the head-to-tail conformation of SAMHD1 proteins favors toggling of the interaction sites by Vpx/Vpr during this virus-host arms race. Such drastic functional divergence within a lentiviral protein highlights a novel plasticity in the evolutionary dynamics of viral antagonists for restriction factors during lentiviral adaptation to its hosts. © 2013 Fregoso et al

    Correlation between nucleotide composition and folding energy of coding sequences with special attention to wobble bases

    Get PDF
    Background: The secondary structure and complexity of mRNA influences its accessibility to regulatory molecules (proteins, micro-RNAs), its stability and its level of expression. The mobile elements of the RNA sequence, the wobble bases, are expected to regulate the formation of structures encompassing coding sequences. Results: The sequence/folding energy (FE) relationship was studied by statistical, bioinformatic methods in 90 CDS containing 26,370 codons. I found that the FE (dG) associated with coding sequences is significant and negative (407 kcal/1000 bases, mean +/- S.E.M.) indicating that these sequences are able to form structures. However, the FE has only a small free component, less than 10% of the total. The contribution of the 1st and 3rd codon bases to the FE is larger than the contribution of the 2nd (central) bases. It is possible to achieve a ~ 4-fold change in FE by altering the wobble bases in synonymous codons. The sequence/FE relationship can be described with a simple algorithm, and the total FE can be predicted solely from the sequence composition of the nucleic acid. The contributions of different synonymous codons to the FE are additive and one codon cannot replace another. The accumulated contributions of synonymous codons of an amino acid to the total folding energy of an mRNA is strongly correlated to the relative amount of that amino acid in the translated protein. Conclusion: Synonymous codons are not interchangable with regard to their role in determining the mRNA FE and the relative amounts of amino acids in the translated protein, even if they are indistinguishable in respect of amino acid coding.Comment: 14 pages including 6 figures and 1 tabl

    ResearchFlow: Understanding the Knowledge Flow between Academia and Industry

    Get PDF
    Understanding, monitoring, and predicting the flow of knowledge between academia and industry is of critical importance for a variety of stakeholders, including governments, funding bodies, researchers, investors, and companies. To this purpose, we introduce ResearchFlow, an approach that integrates semantic technologies and machine learning to quantifying the diachronic behaviour of research topics across academia and industry. ResearchFlow exploits the novel Academia/Industry DynAmics (AIDA) Knowledge Graph in order to characterize each topic according to the frequency in time of the related i) publications from academia, ii) publications from industry, iii) patents from academia, and iv) patents from industry. This representation is then used to produce several analytics regarding the academia/industry knowledge flow and to forecast the impact of research topics on industry. We applied ResearchFlow to a dataset of 3.5M papers and 2M patents in Computer Science and highlighted several interesting patterns. We found that 89.8% of the topics first emerge in academic publications, which typically precede industrial publications by about 5.6 years and industrial patents by about 6.6 years. However this does not mean that academia always dictates the research agenda. In fact, our analysis also shows that industrial trends tend to influence academia more than academic trends affect industry. We evaluated ResearchFlow on the task of forecasting the impact of research topics on the industrial sector and found that its granular characterization of topics improves significantly the performance with respect to alternative solutions

    Influence of dynamic stretching on ankle joint stiffness, vertical stiffness and running economy during treadmill running

    Get PDF
    The purpose of the present study was to investigate whether and how dynamic stretching of the plantarflexors may influence running economy. A crossover design with a minimum of 48 h between experimental (dynamic stretching) and control conditions was used. Twelve recreational runners performed a step-wise incremental protocol to the limit of tolerance on a motorised instrumented treadmill. The initial speed was 2.3 m/s, followed by increments of 0.2 m/s every 3 min. Dynamic joint stiffness, vertical stiffness and running kinematics during the initial stage of the protocol were calculated. Running economy was evaluated using online gas-analysis. For each participant, the minimum number of stages completed before peak O2 uptake (V̇O2peak) common to the two testing conditions was used to calculate the gradient of a linear regression line between V̇O2 (y-axis) and speed (x-axis). The number of stages, which ranged between 4 and 8, was used to construct individual subject regression equations. Non-clinical forms of magnitude-based decision method were used to assess outcomes. The dynamic stretching protocol resulted in a possible decrease in dynamic ankle joint stiffness (−10.7%; 90% confidence limits ±16.1%), a possible decrease in vertical stiffness (−2.3%, ±4.3%), a possibly beneficial effect on running economy (−4.0%, ±8.3%), and very likely decrease in gastrocnemius medialis muscle activation (−27.1%, ±39.2%). The results indicate that dynamic stretching improves running economy, possibly via decreases in dynamic joint and vertical stiffness and muscle activation. Together, these results imply that dynamic stretching should be recommended as part of the warm-up for running training in recreational athletes examined in this study

    Wide-band negative permeability of nonlinear metamaterials

    Get PDF
    We propose a novel way to achieve an exceptionally wide frequency range where metamaterial possesses negative effective permeability. This can be achieved by employing a nonlinear response of metamaterials. We demonstrate that, with an appropriate design, a frequency band exceeding 100% is available for a range of signal amplitudes. Our proposal provides a significant improvement over the linear approach, opening a road towards broadband negative refraction and its applications
    corecore