29 research outputs found
Recommended from our members
Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy.
The placenta participates in maternal insulin sensitivity changes during pregnancy; however, mechanisms remain unclear. We investigated associations between maternal insulin sensitivity and placental DNA methylation markers across the genome. We analyzed data from 430 mother-offspring dyads in the Gen3G cohort. All women underwent 75-g oral glucose tolerance tests at ∼26 weeks of gestation; we used glucose and insulin measures to estimate insulin sensitivity (Matsuda index). At delivery, we collected samples from placenta (fetal side) and measured DNA methylation using Illumina EPIC arrays. Using linear regression models to quantify associations at 720,077 cytosine-guanine dinucleotides (CpGs), with adjustment for maternal age, gravidity, smoking, BMI, child sex, and gestational age at delivery, we identified 188 CpG sites where placental DNA methylation was associated with Matsuda index (P < 6.94 × 10-8). Among genes annotated to these 188 CpGs, we found enrichment in targets for miRNAs, in histone modifications, and in parent-of-origin DNA methylation including the H19/MIR675 locus (paternally imprinted). We identified 12 known placenta imprinted genes, including KCNQ1 Mendelian randomization analyses revealed five loci where placenta DNA methylation may causally influence maternal insulin sensitivity, including the maternally imprinted gene DLGAP2. Our results suggest that placental DNA methylation is fundamentally linked to the regulation of maternal insulin sensitivity in pregnancy
Recommended from our members
Interplay of Placental DNA Methylation and Maternal Insulin Sensitivity in Pregnancy.
The placenta participates in maternal insulin sensitivity changes during pregnancy; however, mechanisms remain unclear. We investigated associations between maternal insulin sensitivity and placental DNA methylation markers across the genome. We analyzed data from 430 mother-offspring dyads in the Gen3G cohort. All women underwent 75-g oral glucose tolerance tests at ∼26 weeks of gestation; we used glucose and insulin measures to estimate insulin sensitivity (Matsuda index). At delivery, we collected samples from placenta (fetal side) and measured DNA methylation using Illumina EPIC arrays. Using linear regression models to quantify associations at 720,077 cytosine-guanine dinucleotides (CpGs), with adjustment for maternal age, gravidity, smoking, BMI, child sex, and gestational age at delivery, we identified 188 CpG sites where placental DNA methylation was associated with Matsuda index (P < 6.94 × 10-8). Among genes annotated to these 188 CpGs, we found enrichment in targets for miRNAs, in histone modifications, and in parent-of-origin DNA methylation including the H19/MIR675 locus (paternally imprinted). We identified 12 known placenta imprinted genes, including KCNQ1 Mendelian randomization analyses revealed five loci where placenta DNA methylation may causally influence maternal insulin sensitivity, including the maternally imprinted gene DLGAP2. Our results suggest that placental DNA methylation is fundamentally linked to the regulation of maternal insulin sensitivity in pregnancy
Recommended from our members
Vitamin D–Binding Protein and Vitamin D Status of Black Americans and White Americans
BackgroundLow levels of total 25-hydroxyvitamin D are common among black Americans. Vitamin D-binding protein has not been considered in the assessment of vitamin D deficiency.MethodsIn the Healthy Aging in Neighborhoods of Diversity across the Life Span cohort of blacks and whites (2085 participants), we measured levels of total 25-hydroxyvitamin D, vitamin D-binding protein, and parathyroid hormone as well as bone mineral density (BMD). We genotyped study participants for two common polymorphisms in the vitamin D-binding protein gene (rs7041 and rs4588). We estimated levels of bioavailable 25-hydroxyvitamin D in homozygous participants.ResultsMean (±SE) levels of both total 25-hydroxyvitamin D and vitamin D-binding protein were lower in blacks than in whites (total 25-hydroxyvitamin D, 15.6±0.2 ng per milliliter vs. 25.8±0.4 ng per milliliter, P<0.001; vitamin D-binding protein, 168±3 μg per milliliter vs. 337±5 μg per milliliter, P<0.001). Genetic polymorphisms independently appeared to explain 79.4% and 9.9% of the variation in levels of vitamin D-binding protein and total 25-hydroxyvitamin D, respectively. BMD was higher in blacks than in whites (1.05±0.01 g per square centimeter vs. 0.94±0.01 g per square centimeter, P<0.001). Levels of parathyroid hormone increased with decreasing levels of total or bioavailable 25-hydroxyvitamin D (P<0.001 for both relationships), yet within each quintile of parathyroid hormone concentration, blacks had significantly lower levels of total 25-hydroxyvitamin D than whites. Among homozygous participants, blacks and whites had similar levels of bioavailable 25-hydroxyvitamin D overall (2.9±0.1 ng per milliliter and 3.1±0.1 ng per milliliter, respectively; P=0.71) and within quintiles of parathyroid hormone concentration.ConclusionsCommunity-dwelling black Americans, as compared with whites, had low levels of total 25-hydroxyvitamin D and vitamin D-binding protein, resulting in similar concentrations of estimated bioavailable 25-hydroxyvitamin D. Racial differences in the prevalence of common genetic polymorphisms provide a likely explanation for this observation. (Funded by the National Institute on Aging and others.)