9 research outputs found

    Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil

    Get PDF
    Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment

    The abiotic removal of organic micropollutants with iron and manganese oxides in rapid sand filters for groundwater treatment

    Get PDF
    Rapid sand filters (RSFs) have shown potential for removing organic micropollutants (OMPs) from groundwater. However, the abiotic removal mechanisms are not well understood. In this study, we collect sand from two field RSFs that are operated in series. The sand from the primary filter abiotically removes 87.5% of salicylic acid, 81.4% of paracetamol, and 80.2% of benzotriazole, while the sand from the secondary filter only removes paracetamol (84.6%). The field collected sand is coated by a blend of iron oxides (FeOx) and manganese oxides (MnOx) combined with organic matter, phosphate, and calcium. FeOx adsorbs salicylic acid via bonding of carboxyl group with FeOx. The desorption of salicylic acid from field sand indicates that salicylic acid is not oxidized by FeOx. MnOx adsorbs paracetamol through electrostatic interactions, and further transforms it into p-benzoquinone imine through hydrolysis-oxidation. FeOx significantly adsorbs organic matter, calcium, and phosphate, which in turn influences OMP removal. Organic matter on field sand surfaces limits OMP removal by blocking sorption sites on the oxides. However, calcium and phosphate on field sand support benzotriazole removal via surface complexation and hydrogen bonding. This paper provides further insight into the abiotic removal mechanisms of OMPs in field RSFs

    Implications of microbial adaptation for the assessment of environmental persistence of chemicals

    Get PDF
    Persistency of organic chemicals is a key property in their environmental risk assessment. Information on persistency is often derived from the results of biodegradability screening tests such as the ready biodegradability tests (RBTs). RBTs are, however, not designed for this purpose and suffer from several problems that lead to a high variability of the results and, hence, to difficulties in their interpretation. The origin and exposure history of the inocula used for biodegradability testing can lead to highly variable outcomes. Microbial adaptation to chemicals and its impact on biodegradation needs further investigation in order to have a better understanding of their effects on persistency assessments of chemicals. It is well described that microbial adaptation stimulates biodegradation of organic chemicals. Several mechanisms responsible for these phenomena have been described, amongst which are i) shifts in community composition or abundances, ii) mutations within populations, iii) horizontal gene transfer or iv) recombination events. These adaptation processes may well be mimicked under laboratory conditions, but the outcome remains difficult to predict as we lack a fundamental understanding of the adaptive responses. This review aims to bring together our current knowledge regarding microbial adaptation and its implication for the testing of biodegradation of chemicals

    Biodegradation of metformin and its transformation product, guanylurea, by natural and exposed microbial communities

    Get PDF
    Metformin (MET) is a pharmaceutical product mostly biotransformed in the environment to a transformation product, guanylurea (GUA). In ready biodegradability tests (RBTs), however, contrasting results have been observed for metformin. The objective of this study was to measure the biodegradation of MET and GUA in RBTs, using activated sludge from the local wastewater treatment plant, either directly or after pre-exposure to MET, in a chemostat. The activated sludge community was cultivated in chemostats, in presence or absence of MET, for a period of nine months, and was used in RBT after one, three and nine months. The results of this study showed that the original activated sludge was able to completely remove MET (15 mg/l) and the newly produced GUA (50% of C0MET) under the test conditions. Inoculation of the chemostat led to a rapid shift in the community composition and abundance. The community exposed to 1.5 mg/l of MET was still able to completely consume MET in the RBTs after one-month exposure, but three- and nine-months exposure resulted in reduced removal of MET in the RBTs. The ability of the activated sludge community to degrade MET and GUA is the result of environmental exposure to these chemicals as well as of conditions that could not be reproduced in the laboratory system. A MET-degrading strain belonging to the genus Aminobacter has been isolated from the chemostat community. This strain was able to completely consume 15 mg/l of MET within three days in the test. However, community analysis revealed that the fluctuation in relative abundance of this genus (<1%) could not be correlated to the fluctuation in biodegradation capacity of the chemostat community

    Exploring organic micropollutant biodegradation under dynamic substrate loading in rapid sand filters

    Get PDF
    Microbial removal of trace organic micropollutants (OMPs) from drinking water sources remains challenging. Nitrifying and heterotrophic bacteria in rapid sand filters (RSFs) are capable of biodegrading OMPs while growing on ammonia and dissolved organic matter (DOM). The loading patterns of ammonia and DOM may therefore affect microbial activities as well as OMP biodegradation. So far, there is very limited information on the effect of substrate loading on OMP biodegradation at environmentally relevant concentrations (∼ 1 µg/L) in RSFs. We investigated the biodegradation rates of 16 OMPs at various substrate loading rates and/or empty bed contact times (EBCT). The presence of DOM improved the biodegradation of paracetamol (41.8%) by functioning as supplementary carbon source for the heterotrophic degrader, while hindering the biodegradation of 2,4-D, mecoprop and benzotriazole due to substrate competition. Lower loading ratios of DOM/benzotriazole benefited benzotriazole biodegradation by reducing substrate competition. Higher ammonia loading rates enhanced benzotriazole removal by stimulating nitrification-based co-metabolism. However, stimulating nitrification inhibited heterotrophic activity, which in turn inhibited the biodegradation of paracetamol, 2,4-D and mecoprop. A longer EBCT promoted metformin biodegradation as it is a slowly biodegradable compound, but suppressed the biodegradation of paracetamol and benzotriazole due to limited substrate supply. Therefore, the optimal substrate loading pattern is contingent on the type of OMP, which can be chosen based on the priority compounds in practice. The overall results contribute to understanding OMP biodegradation mechanisms at trace concentrations and offer a step towards enhancing microbial removal of OMPs from drinking water by optimally using RSFs

    Influence of short- And long-term exposure on the biodegradation capacity of activated sludge microbial communities in ready biodegradability tests

    Get PDF
    Ready biodegradability tests (RBTs) are extensively used to screen the potential of chemicals to be biodegraded. The use of RBT protocols often results in large variations of test results that may lead to wrong interpretations. The present study aims to obtain a fundamental understanding of this variability. For this, we subjected the compounds 4-chloroaniline (4CA), carbamazepine (CBZ), metformin (MET), and N-methylpiperazine (NMP) to a variety of different test conditions. Inocula from five local wastewater treatment plants (WWTPs) were used in an attempt to enhance the Organisation for Economic Co-operation and Development (OECD) 310 biodegradability tests. The biodegradation capacity in RBTs, community composition and adaptation of the communities were compared after one week of pre-exposure in batch and four months exposure in chemostat. The results confirm that none of the test compounds is readily biodegradable in the standard OECD 310 RBT. However, when pre-exposure under either batch or chemostat conditions was included, 4CA was degraded in some cases and less variability among different inocula was observed for the transformation of MET. Bacterial communities from the five locations were found to be significantly different in composition from one another. In addition, pre-treatment performed before the RBT significantly changed the composition of each community. Results of this experiment show that short-term pre-exposure may increase the absolute number of degraders and deserves to be further investigated as a potential method to reduce the outcome variability of RBTs.</p

    Unravelling the contribution of nitrifying and methanotrophic bacteria to micropollutant co-metabolism in rapid sand filters

    No full text
    The presence of organic micropollutant (OMP) in groundwater threatens drinking water quality and public health. Rapid sand filter (RSF) rely on biofilms with nitrifying and methanotrophic bacteria to remove ammonia and methane during drinking water production. Previous research observed the partial removal of OMPs with active nitrification and methane oxidation due to co-metabolic conversion of OMPs. However, the contribution of indigenous nitrifying and methanotrophic communities from RSF has yet to be fully explored. Accordingly, experiments were carried out with biofilm-covered sand collected from field-scale RSF, to assess the removal of nine OMPs by nitrifying and methanotrophic bacteria. Results indicated that stimulating nitrification resulted in significantly more removal of caffeine, 2,4-dichlorophenoxyacetic acid and bentazone. Stimulating methanotrophic conditions enhanced the removal of caffeine, benzotriazole, 2,4-dichlorophenoxyacetic acid and bentazone. Microbial community analysis based on 16 S rRNA gene sequencing revealed Nitrosomonas and Nitrospira are the dominant genus in the community under nitrifying conditions. The three genera Methylobacter, Methylomonas and Methylotenera were enriched under methanotrophic conditions. This study highlights that nitrifying and methanotrophic bacteria play important roles during OMP removal in field RSF. Furthermore, results suggest that bioaugmentation with an enriched nitrifying and methanotrophic culture is a promising approach to improve OMP removal in RSF

    Dataset for the article: Exploring organic micropollutant biodegradation under dynamic substrate loading in rapid sand filters

    No full text
    The dataset includes the raw data on the concentration of organic micropollutants, ammonia, total organic carbon, and other relevant contaminants. This dataset also includes the processed data, such as the loading rates and kinetic constants of organic micropollutants and the loading rates of ammonia and dissolved organic matter. In addition, the qPCR data is also present in this dataset. The details of methodology were given in the published article which is linked to this dataset
    corecore