7 research outputs found
Cancer stem cells: A review from origin to therapeutic implications
Cancer stem cells (CSCs), also known as tumor-initiating cells (TICs), are elucidated as cells that can perpetuate themselves via autorestoration. These cells are highly resistant to current therapeutic approaches and are the main reason for cancer recurrence. Radiotherapy has made a lot of contributions to cancer treatment. However, despite continuous achievements, therapy resistance and tumor recurrence are still prevalent in most patients. This resistance might be partly related to the existence of CSCs. In the present study, recent advances in the investigation of different biological properties of CSCs, such as their origin, markers, characteristics, and targeting have been reviewed. We have also focused our discussion on radioresistance and adaptive responses of CSCs and their related extrinsic and intrinsic influential factors. In summary, we suggest CSCs as the prime therapeutic target for cancer treatment. © 2019 Wiley Periodicals, Inc
Optimizing bacterial cellulose production towards materials for water remediation
Cellulose is a renewable alternative to mass consumption plastics, but its manufacture by the classical methods is not sustainable due to the use of large amounts of strong acids, bases and/or organic species (e.g. ionic liquids) in its production, generating many residues. Bacterial cellulose (BC) has a simpler processing because it is much more cleanly generated. In this work, BC aerogels and xerogels are compared in order to ascertain how the bacterial culture conditions (pH, carbon and nitrogen sources) and the raw hydrogels processing determine their thermal stability, crystallinity index, swelling ratio and flammability. The most notable results are the influence of the drying method on the swelling ratio and the carbon source on the thermal stability. Finally, a feasible application of BC aerogels is presented by treating contaminated water and by capturing water within a non-polar solvent, taking advantage of the dry BC sorption capacity.Financial support was obtained from the Spanish Ministry of Economy, Industry and Competitiveness (MINEICO), through project IJCI-2016-27789, the Spanish Research Agency (AEI) through GRAPEROS project (ref ENE2016-79282-C5-1-R1 and associated EU Regional Development Funds), and from Gobierno de Aragón (Grupo Reconocido DGA T03_17R, A02_17R and associated EU Regional Development Funds). Dr. J.M.G.-D. greatfully acknowledges MINEICO for his ‘Juan de la Cierva – Incorporación’ research contract.Peer reviewe