36 research outputs found
OFDMA-Based Medium Access Control for Next-Generation WLANs
Existing medium access control (MAC) schemes for wireless local area networks (WLANs) have been shown to lack scalability in crowded networks and can suffer from widely varying delays rendering them unsuited to delay sensitive applications, such as voice and video communications. These deficiencies are mainly due to the use of random multiple access techniques in the MAC layer. The design of these techniques is highly linked to the choice of the underlying physical (PHY) layer technology. The advent of new PHY schemes that are based on orthogonal frequency division multiple access (OFDMA) provides new opportunities for devising more efficient MAC protocols. We propose a new adaptive MAC design based on OFDMA technology. The design uses OFDMA to reduce collision during transmission request phases and makes channel access more predictable. To improve throughput, we combine the OFDMA access with a carrier sense multiple access (CSMA) scheme. Data transmission opportunities are assigned through an access point that can schedule traffic streams in both time and frequency (subchannels) domains. We demonstrate the effectiveness of the proposed MAC and compare it to existing mechanisms through simulation and by deriving an analytical model for the operation of the MAC in saturation mode
Removal of Amoxiclav Antibiotic from Aqueous Solutions Using Ultrasonic Waves
Antibiotics enter the environment, mainly aquatic environments, through the effluents of pharmaceutical industries, antibiotic factories, hospitals, human and animal sewage. Toxicity (carcinogenicity, mutagenicity and damage to the body's DNA), biodegradability, and drug resistance in antibiotics have caused these compounds to be called semi-persistent pollutants in the environment. The present study was conducted to investigate the effectiveness of ultrasonic waves in reducing the antibiotic amoxiclav in aqueous solutions. The discharge and flow velocity parameters have been neglected due to their insignificance. The investigated variables included contact time, amoxiclav concentration, and pH. Antibiotics were based on concentrations of 2 and 6 mg/L of Amoxiclav, retention time (30, 45, 60) minutes, and pH values (3, 7, 9) in an ultrasonic device with a volume of 10 liters and internal dimensions (20*30*50), and the frequency was set to 95. Then the remaining concentration in the samples was measured by HPLC. The obtained results were subjected to statistical analysis with SPSS software. As the retention time increases, the initial concentration of the antibiotic decreases, but on the contrary, as the initial concentration increases, the removal of the antibiotic decreases. The highest concentration reduction of amoxiclav in concentration 2 (mg/L) is about 50% in the retention time of 60 minutes and pH = 3, but in concentration of 6 (mg/L), the highest concentration reduction is in the same retention time and pH of about 47%. The advantages of ultrasonication are easy application, acceleration of chemical and biological processes, no production of secondary pollutants, reduction of suspended and soluble substances in water, and an effective and cheap method to remove the antibiotic Amoxiclav
Phase Stability, Microstructure, and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Boron-Doped AlCoFeMnNi High-Entropy Alloy
The microstructure and mechanical properties of mechanically alloyed and spark plasma sintered AlCoFeMnNi₋ₓB (x = 0, 0.5, 1, and 5 at. %) high-entropy alloys (HEAs) have been investigated. Boron-doped HEAs were synthesized using mechanical alloying up to 50 h of milling. Synthesized powders were then consolidated at 850, 900, and 950 °C for 10 min under a uniaxial pressure of 40 MPa using spark plasma sintering (SPS). A scanning electron microscope, which was equipped with energy dispersive spectroscopy (EDS), together with an optical microscope (OM) were used to analyze the microstructural evolution. X-ray diffraction analysis was used to differentiate the phases formed in the solution. The mechanical properties of the sintered specimens were analyzed using the shear-punch test (SPT). The fracture surface of the SPT samples was studied using SEM. Thermodynamic calculations revealed that by employing this process, it is possible to produce solid solution HEAs with a duplex FCC + BCC structure. It was shown that boron-doped AlCoFeMnNi high-entropy alloys contain some unique attributes. SPS at 900 °C for a sample with boron up to 0.5 at. % leads to the formation of an alloy with the highest shear strength. A further increase in the boron content in the boron-doped HEAs exhibited a decrease in the maximum shear strength. Finally, the correlations between the microstructural and mechanical characteristics of the sintered boron-containing high-entropy alloys are discussed
Phase Stability, Microstructure, and Mechanical Properties of Spark Plasma Sintered Nanocrystalline Boron-Doped AlCoFeMnNi High-Entropy Alloy
The microstructure and mechanical properties of mechanically alloyed and spark plasma sintered AlCoFeMnNi₋ₓB (x = 0, 0.5, 1, and 5 at. %) high-entropy alloys (HEAs) have been investigated. Boron-doped HEAs were synthesized using mechanical alloying up to 50 h of milling. Synthesized powders were then consolidated at 850, 900, and 950 °C for 10 min under a uniaxial pressure of 40 MPa using spark plasma sintering (SPS). A scanning electron microscope, which was equipped with energy dispersive spectroscopy (EDS), together with an optical microscope (OM) were used to analyze the microstructural evolution. X-ray diffraction analysis was used to differentiate the phases formed in the solution. The mechanical properties of the sintered specimens were analyzed using the shear-punch test (SPT). The fracture surface of the SPT samples was studied using SEM. Thermodynamic calculations revealed that by employing this process, it is possible to produce solid solution HEAs with a duplex FCC + BCC structure. It was shown that boron-doped AlCoFeMnNi high-entropy alloys contain some unique attributes. SPS at 900 °C for a sample with boron up to 0.5 at. % leads to the formation of an alloy with the highest shear strength. A further increase in the boron content in the boron-doped HEAs exhibited a decrease in the maximum shear strength. Finally, the correlations between the microstructural and mechanical characteristics of the sintered boron-containing high-entropy alloys are discussed
The Requirements of Developing Countries' Health Systems Facing with COVID-19: A Case Study of Iran
5.A. Oral sessionAbstract not availableA Ghanbarzadegan, P Bastani, F Emadi, M Mohammadpour, K Pourmohammadi, S Javanmard
Combination therapy of mesenchymal stromal cells and sulfasalazine attenuates trinitrobenzene sulfonic acid induced colitis in the rat: The S1P pathway
Adipose derived mesenchymal stem cells (ASCs) transplantation is a novel immunomodulatory therapeutic tool to ameliorate the symptom of inflammatory bowel disease (IBD). The objective of this study was to investigate the therapeutic effects of combined sufasalazine and ASCs therapy in a rat model of IBD. After induction of colitis in rats, ASCs were cultured and intraperitoneally injected (3 × 10 6 cells/kg) into the rats on Days 1 and 5 after inducing colitis, in conjunction with daily oral administration of low dose of sulfasalazine (30 mg/kg). The regenerative effects of combination of ASCs and sulfasalazine on ulcerative colitis were assessed by measuring body weight, colonic weight/length ratio, disease activity index, macroscopic scores, histopathological examinations, cytokine, and inflammation markers profiles. In addition, western blot analysis was used to assess the levels of nuclear factor-kappa B (NF-κB) and apoptosis related proteins in colitis tissues. Simultaneous treatment with ASCs and sulfasalazine was associated with significant amelioration of disease activity index, macroscopic and microscopic colitis scores, as well as inhibition of the proinflammatory cytokines in trinitrobenzene sulfonic acid (TNBS)-induced colitis. Moreover, combined ASCs and sulfasalazine therapy effectively inhibited the NF-κB signaling pathway, reduced the expression of Bax and prevented the loss of Bcl-2 proteins in colon tissue of the rats with TNBS-induced colitis. Furthermore, combined treatment with ASCs and sulfasalazine shifted inflammatory M1 to anti-inflammatory M2 macrophages by decreasing the levels of MCP1, CXCL9 and increasing IL-10, Arg-1 levels. In conclusion, combination of ASCs with conventional IBD therapy is potentially a much more powerful strategy to slow the progression of colitis via reducing inflammatory and apoptotic markers than either therapy alone